Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Use of genomic and phenotypic selection in lines for prediction of testcrosses in maize I: grain yield and its components (2017)

  • Authors:
  • USP affiliated authors: SOUZA JUNIOR, CLAUDIO LOPES DE - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1007/s10681-017-2018-x
  • Subjects: FENÓTIPOS; MILHO; CRUZAMENTO VEGETAL; GENÔMICA; GRÃOS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Euphytica
    • ISSN: 0014-2336
    • Volume/Número/Paginação/Ano: v. 213, n. 9, art. 220, 2017
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10681-017-2018-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10681-017-2018-x (Fonte: Unpaywall API)

    Título do periódico: Euphytica

    ISSN: 0014-2336,1573-5060



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Euphytica

    ISSN: 0014-2336

    Citescore - 2017: 1.79

    SJR - 2017: 0.742

    SNIP - 2017: 1.013


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MÔRO, Gustavo Vitti; SANTOS, Mateus Figueiredo; SOUZA JÚNIOR, Cláudio Lopes de. Use of genomic and phenotypic selection in lines for prediction of testcrosses in maize I: grain yield and its components. Euphytica, Amsterdam, Springer Nature, v. 213, n. 9, 2017. Disponível em: < http://dx.doi.org/10.1007/s10681-017-2018-x > DOI: 10.1007/s10681-017-2018-x.
    • APA

      Môro, G. V., Santos, M. F., & Souza Júnior, C. L. de. (2017). Use of genomic and phenotypic selection in lines for prediction of testcrosses in maize I: grain yield and its components. Euphytica, 213( 9). doi:10.1007/s10681-017-2018-x
    • NLM

      Môro GV, Santos MF, Souza Júnior CL de. Use of genomic and phenotypic selection in lines for prediction of testcrosses in maize I: grain yield and its components [Internet]. Euphytica. 2017 ; 213( 9):Available from: http://dx.doi.org/10.1007/s10681-017-2018-x
    • Vancouver

      Môro GV, Santos MF, Souza Júnior CL de. Use of genomic and phenotypic selection in lines for prediction of testcrosses in maize I: grain yield and its components [Internet]. Euphytica. 2017 ; 213( 9):Available from: http://dx.doi.org/10.1007/s10681-017-2018-x

    Referências citadas na obra
    Alves GF, Ramalho MAP, Souza JC (2002) Alterações nas propriedades genéticas da população CMS-39 submetida à seleção massal para a prolificidade. Revista Brasileira de Milho e Sorgo 1:89–101
    Arias CAA, de Souza Júnior CL, Takeda C (1999) Path coefficient analyses of ear weight in different types of progeny in maize. Maydica 44:251–262
    Austin DF, Lee M (1998) Detection of quantitative loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38:1296–1308
    Austin DF, Lee M, Veldboom LR, Hallauer AR (2000) Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci 40:30–39
    Basten CJ, Weir BS, Zeng Z-B (2003) QTL cartographer: version 1.17
    Beavis WD, Smith OS, Grant D, Fincher RR (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896
    Bento DAV, Ramalho MAP, Souza JC (2003) Seleção massal para prolificidade em milho na época normal e na “safrinha”. Revista Brasileira de Milho e Sorgo 2:78–87
    Berke TG, Rocheford TR (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci 35:1542–1549
    Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury
    Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664
    Bernardo R (2009) Genome wide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425
    Bernardo R, Yu J (2007) Prospects for genome wide selection for quantitative traits in maize. Crop Sci 47:1082–1090
    Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alelles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959
    Cochran WG, Cox GM (1966) Experimental design. Wiley, New York
    East EM (1908) Inbreeding in corn. Conn Agric Expt Sta Rept for 1907:419–428
    Geldermann H (1975) Investigations of inheritance of quantitative characters in animals by gene markers. I. Methods. Theor Appl Genet 46:319–330
    Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330
    Groh S, Khairallah MM, González-de-Leon D, Willcox M, Jiang C, Hoisington DA, Melchinger EH (1998) Comparison of QTL mapped in RILs and their test-cross progenies of tropical maize for insect resistance and agronomic traits. Plant Breed 117:193–202
    Hallauer AR, Miranda Filho JB (1988) Quantitative genetics in maize breeding. Iowa State University Press, Ames
    Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12
    Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Ontario
    Hospital F, Moreau L, Charcosset A, Gallais A (1997) More the efficiency of marker assisted selection. Theor Appl Genet 95:1181–1189
    Jacobson A, Lian L, Zhong S, Bernardo R (2014) General combining ability model for genomewide selection in a biparental cross. Crop Sci 54:895–905
    Jiang C, Zeng Z (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127
    Jones DF (1918) The effects of inbreeding and crossbreeding upon development. Conn Agric Expt Sta Bull 207:5–100
    Jugenheimer RW (1976) Corn improvement, seed production and uses. Wiley, New York
    Kolbehdari D, Schaeffer LR, Robinson JAB (2007) Estimation of genome-wide haplotype effect in half-sib designs. J Anim Breed Genet 124:356–361
    Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199
    Legarra A, Misztal I (2008) Computing strategies in genome-wide selection. J Dairy Sci 91:360–366
    Leon N, Coors JG (2002) Twenty-four cycles of mass selection for prolificacy in the Golden Glow maize population. Crop Sci 42:325–333
    Lima MLA, Souza CL Jr, Vieira DA, Souza PH, Garcia LC (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239
    Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with Mapmaker Exp 3.0. Whitehead Institute for Biometrical Research, Cambridge
    Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G (2008) Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.). Genomics 91:378–387
    Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161
    Lu H, Romero-Severson J, Bernardo R (2003) Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 107:494–502
    Maita R, Coors JG (1996) Twenty cycles of biparental mass selection for prolificacy in the open pollinated maize population Golden-Glow. Crop Sci 36:1527–1532
    Malvar RA, Ordás A, Revilla P, Cartea ME (1996) Estimates of genetic variance in two Spanish populations of maize. Crop Sci 36:291–295
    Massman JM, Jung H-JG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66
    Mendes MP, Souza Júnior CL (2016) Genomewide prediction of tropical maize single-crosses. Euphytica 209:651–663
    Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829
    Mihaljevic R, Schon CC, Utz HF, Melchinger EH (2005) Correlations and QTL correspondence between line per se and testcross performance for agronomic traits in four populations of European maize. Crop Sci 45:114–122
    Moreira JUV, Bento DAV, Souza PH, Souza CL Jr (2009) QTL mapping for reaction to Phaeosphaeria leaf spot in a tropical maize population. Theor Appl Genet 119:1361–1369
    Môro GV, Santos MF, Bento DAV, Aguiar AM, Souza CL Jr (2012) Genetic analysis of kernel oil content in tropical maize with design III and QTL mapping. Euphytica 185:419–428
    Peng B, Li Y, Wang Y, Liu C, Liu Z, Zhang Y, Tan W, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y (2013) Correlations and comparisons of quantitative trait loci with family per se and testcross performance for grain yield and related traits in maize. Theor Appl Genet 126:773–789
    Robinson HF, Comstock RE, Harvey PH (1949) Estimates of heritability and the degree of dominance in corn. Agron J 41:353–359
    Sabadin PK, Souza CL Jr, Souza PH, Garcia AAF (2008) QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145:194–203
    SAS Institute Inc (2001) SAS/STAT User’s guide, v.6.03. SAS Institute, Cary
    Shull GH (1910) Hybridization methods in corn breeding. Am Breed Mag 6:63–72
    Sibov ST, Souza CL Jr, Garcia AAF, Silva AR, Mangolin CA, Benchimol LL, Souza PH (2003) Molecular mapping in tropical maize using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, ear height, and grain moisture. Hereditas 139:107–115
    Stuber CW, Sisco P (1992) Marker-facilitated transfer of QTL alleles between inbred lines and responses in hybrids. In: Proceedings of 46th Ann Corn Sorghum Res. Conference. ASTA, Washington pp 104–113
    Vieira C, Pasyukova EG, Zeng ZB, Hackette JB, Lyman RF, Mackay TFC (2000) Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics 154:213–227
    Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1466