Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Unsupervised active learning techniques for labeling training sets: an experimental evaluation on sequential data (2017)

  • Authors:
  • USP affiliated authors: BATISTA, GUSTAVO ENRIQUE DE ALMEIDA PRADO ALVES - ICMC ; REZENDE, SOLANGE OLIVEIRA - ICMC
  • USP Schools: ICMC; ICMC
  • DOI: 10.3233/IDA-163075
  • Subjects: APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE PADRÕES; ANÁLISE DE SÉRIES TEMPORAIS
  • Keywords: Unsupervised active learning; training set labeling; clustering; centrality measures; sequential data
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.3233/IDA-163075 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.3233/IDA-163075 (Fonte: Unpaywall API)

    Título do periódico: Intelligent Data Analysis

    ISSN: 1088-467X,1571-4128



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Intelligent Data Analysis

    ISSN: 1088-467X

    Citescore - 2017: 0.81

    SJR - 2017: 0.281

    SNIP - 2017: 0.516


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2863646-10PROD-2863646
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOUZA, Vinícius M. A; ROSSI, Rafael G; BATISTA, Gustavo Enrique de Almeida Prado Alves; REZENDE, Solange Oliveira. Unsupervised active learning techniques for labeling training sets: an experimental evaluation on sequential data. Intelligent Data Analysis, Amsterdam, IOS Press, v. 21, n. 5, p. 1061-1095, 2017. Disponível em: < http://dx.doi.org/10.3233/IDA-163075 > DOI: 10.3233/IDA-163075.
    • APA

      Souza, V. M. A., Rossi, R. G., Batista, G. E. de A. P. A., & Rezende, S. O. (2017). Unsupervised active learning techniques for labeling training sets: an experimental evaluation on sequential data. Intelligent Data Analysis, 21( 5), 1061-1095. doi:10.3233/IDA-163075
    • NLM

      Souza VMA, Rossi RG, Batista GE de APA, Rezende SO. Unsupervised active learning techniques for labeling training sets: an experimental evaluation on sequential data [Internet]. Intelligent Data Analysis. 2017 ; 21( 5): 1061-1095.Available from: http://dx.doi.org/10.3233/IDA-163075
    • Vancouver

      Souza VMA, Rossi RG, Batista GE de APA, Rezende SO. Unsupervised active learning techniques for labeling training sets: an experimental evaluation on sequential data [Internet]. Intelligent Data Analysis. 2017 ; 21( 5): 1061-1095.Available from: http://dx.doi.org/10.3233/IDA-163075

    Referências citadas na obra
    Autor: Amancio
    Título: Probing the topological properties of complex networks modeling short written texts
    Título do periódico: PLOS ONE
    Volume: 10
    Fascículo: 2
    Primeira página: e0118394
    Ano: 2015
    DOI: 10.1371/journal.pone.0118394
    Autor: Angluin
    Título: Queries revisited
    Título do periódico: Theoretical Computer Science
    Volume: 313
    Fascículo: 2
    Primeira página: 175
    Ano: 2004
    DOI: 10.1016/j.tcs.2003.11.004
    B. Araujo and L. Zhao, Detecting and labeling representative nodes for network-based semi-supervised learning, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2013, pp. 1729–1736.
    Autor: Baram
    Título: Online choice of active learning algorithms
    Título do periódico: Journal of Machine Learning Research
    Volume: 5
    Primeira página: 255
    Ano: 2004
    Autor: Batista
    Título: CID: an efficient complexity-invariant distance for time series
    Título do periódico: Data Mining and Knowledge Discovery
    Volume: 28
    Fascículo: 3
    Primeira página: 634
    Ano: 2014
    DOI: 10.1007/s10618-013-0312-3
    Autor: Breve
    Título: Particle competition and cooperation in networks for semi-supervised learning
    Título do periódico: IEEE Transactions on Knowledge and Data Engineering
    Volume: 24
    Fascículo: 9
    Primeira página: 1686
    Ano: 2012
    DOI: 10.1109/TKDE.2011.119
    Autor: Brin
    Título: The anatomy of a large-scale hypertextual web search engine
    Título do periódico: Computer Networks
    Volume: 30
    Primeira página: 107
    Ano: 1998
    Autor: Chadwick
    Título: The effects of atmospheric pressure and composition on the flight of drosophila
    Título do periódico: The Biological Bulletin
    Volume: 97
    Fascículo: 2
    Primeira página: 115
    Ano: 1949
    DOI: 10.2307/1538291
    O. Chapelle, B. Schölkopf and A. Zien, Semi-Supervised Learning, MIT Press, 2006.
    L. Chen and R. Ng, On the marriage of lp-norms and edit distance, in: Proceedings of the International Conference on Very large data bases (VLDB), 2004, pp. 792–803.
    L. Chen, M.T. Özsu and V. Oria, Robust and fast similarity search for moving object trajectories, in: Proceedings of the International Conference on Management of data (SIGMOD), 2005, pp. 491–502.
    Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen and G. Batista, The ucr time series classification archive, July 2015. www.cs.ucr.edu/ẽamonn/time_series_data/.
    C.A.R. de Sousa, S.O. Rezende and G.E.A.P.A. Batista, Influence of graph construction on semi-supervised learning, in: Proceedings of the European Conference Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), 2013, pp. 160–175.
    C.A.R. de Sousa, V.M.A. Souza and G.E.A.P.A. Batista, Time series transductive classification on imbalanced data sets: An experimental study, in: Proceedings of the International Conference on Pattern Recognition (ICPR), 2014, pp. 3780–3785.
    C.A.R. de Sousa, V.M.A. Souza and G.E.A.P.A. Batista, An experimental analysis on time series transductive classification on graphs, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8.
    O. Delalleau, Y. Bengio and N. Le-Roux, Efficient non-parametric function induction in semi-supervised learning, in: Proceedings of the International Workshop on Artificial Intelligence and Statistics (AISTATS), 2005, pp. 96–103.
    Autor: Dempster
    Título: Maximum likelihood from incomplete data via the EM algorithm
    Título do periódico: Journal of the Royal Statistical Society
    Volume: 39
    Primeira página: 1
    Ano: 1977
    Autor: Demšar
    Título: Statistical comparisons of classifiers over multiple data sets
    Título do periódico: The Journal of Machine Learning Research
    Volume: 7
    Primeira página: 1
    Ano: 2006
    H. Ding, G. Trajcevski, P. Scheuermann, X. Wang and E. Keogh, Querying and mining of time series data: Experimental comparison of representations and distance measures, Proceedings of the VLDB Endowment 1(2) (2008), 1542–1552.
    M. Ester, H. Kriegel, J. Sander and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), 96 (1996), pp 226–231.
    C. Faloutsos, M. Ranganathan and Y. Manolopoulos, Fast subsequence matching in time-series databases, in: Proceedings of the International Conference on Management of Data (SIGMOD), 1994, pp. 1–11.
    Autor: Fernández
    Título: A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    Título do periódico: Fuzzy Sets and Systems
    Volume: 159
    Fascículo: 18
    Primeira página: 2378
    Ano: 2008
    DOI: 10.1016/j.fss.2007.12.023
    E. Frentzos, K. Gratsias and Y. Theodoridis, Index-based most similar trajectory search, in Proceedings of the International Conference on Data Engineering (ICDE), 2007, pp. 816–825.
    Autor: Fu
    Título: A survey on instance selection for active learning
    Título do periódico: Knowledge and Information Systems
    Volume: 35
    Fascículo: 2
    Primeira página: 249
    Ano: 2013
    DOI: 10.1007/s10115-012-0507-8
    Autor: Fukunaga
    Título: The estimation of the gradient of a density function, with applications in pattern recognition
    Título do periódico: IEEE Transactions on Information Theory
    Volume: 21
    Fascículo: 1
    Primeira página: 32
    Ano: 1975
    DOI: 10.1109/TIT.1975.1055330
    S.C.H. Hoi, R. Jin, J. Zhu and M.R. Lyu, Batch mode active learning and its application to medical image classification, in: Proceedings of the International Conference on Machine Learning (ICML), 2006, pp. 417–424.
    R. Hu, B. Mac-Namee and S.J. Delany, Off to a good start: Using clustering to select the initial training set in active learning, in: Proceedings of the International Florida Artificial Intelligence Research Society Conference (FLAIRS), 2010, pp. 26–31.
    Autor: Hu
    Título: Unsupervised active learning based on hierarchical graph-theoretic clustering
    Título do periódico: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
    Volume: 39
    Fascículo: 5
    Primeira página: 1147
    Ano: 2009
    DOI: 10.1109/TSMCB.2009.2013197
    Autor: Jain
    Título: Data clustering: 50 years beyond k-means
    Título do periódico: Pattern Recognition Letters
    Volume: 31
    Fascículo: 8
    Primeira página: 651
    Ano: 2010
    DOI: 10.1016/j.patrec.2009.09.011
    Autor: Kang
    Título: Using cluster-based sampling to select initial training set for active learning in text classification
    Título do periódico: Advances in Knowledge Discovery and Data Mining
    Primeira página: 384
    Ano: 2004
    DOI: 10.1007/978-3-540-24775-3_46
    Autor: Keogh
    Título: Exact indexing of dynamic time warping
    Título do periódico: Knowledge and Information Systems
    Volume: 7
    Fascículo: 3
    Primeira página: 358
    Ano: 2005
    DOI: 10.1007/s10115-004-0154-9
    E. Keogh, L. Wei, X. Xi, S. Lee and M. Vlachos, Lb_keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures, in: Proceedings of the International Conference on Very Large Data Bases (VLDB), 2006, pp. 882–893.
    S. Kim, P. Smyth and S. Luther, Modeling waveform shapes with random effects segmental hidden markov models, in: Proceedings of the conference on Uncertainty in artificial intelligence (UAI), 2004, pp. 309–316.
    Autor: Klein
    Título: Centrality measure in graphs
    Título do periódico: Journal of Mathematical Chemistry
    Volume: 47
    Fascículo: 4
    Primeira página: 1209
    Ano: 2010
    DOI: 10.1007/s10910-009-9635-0
    D.D. Lewis and W.A. Gale, A sequential algorithm for training text classifiers, in: Proceedings of the International ACM Conference on Research and Development in Information Retrieval (SIGIR), 1994, pp. 3–12.
    Autor: Lughofer
    Título: Hybrid active learning for reducing the annotation effort of operators in classification systems
    Título do periódico: Pattern Recognition
    Volume: 45
    Fascículo: 2
    Primeira página: 884
    Ano: 2012
    DOI: 10.1016/j.patcog.2011.08.009
    S.A. Macskassy, Using graph-based metrics with empirical risk minimization to speed up active learning on networked data, in: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2009, pp. 597–606.
    Autor: Mandel
    Título: Support vector machine active learning for music retrieval
    Título do periódico: Multimedia Systems
    Volume: 12
    Fascículo: 1
    Primeira página: 3
    Ano: 2006
    DOI: 10.1007/s00530-006-0032-2
    Autor: Mellanby
    Título: Humidity and insect metabolism
    Título do periódico: Nature
    Volume: 138
    Primeira página: 124
    Ano: 1936
    DOI: 10.1038/138124c0
    Autor: Nanopoulos
    Título: Feature-based classification of time-series data
    Título do periódico: International Journal of Computer Research
    Volume: 10
    Fascículo: 3
    Primeira página: 49
    Ano: 2001
    M. Newman, Networks: An Introduction, Oxford University Press, Inc., 2010.
    H.T. Nguyen and A. Smeulders, Active learning using pre-clustering, in: Proceedings of the International Conference on Machine Learning (ICML), 2004, p. 79.
    Autor: Reynolds
    Título: Gaussian mixture models
    Título do periódico: Encyclopedia of Biometrics
    Primeira página: 827
    Ano: 2015
    DOI: 10.1007/978-1-4899-7488-4_196
    Autor: Rodriguez
    Título: Clustering by fast search and find of density peaks
    Título do periódico: Science
    Volume: 344
    Fascículo: 6191
    Primeira página: 1492
    Ano: 2014
    DOI: 10.1126/science.1242072
    J.J. Rodríguez and C.J. Alonso, Interval and dynamic time warping-based decision trees, in: Proceedings of the ACM Symposium on Applied Computing (SAC), 2004, pp. 548–552.
    J.J. Rodríguez, C.J. Alonso and H. Boström, Learning first order logic time series classifiers: Rules and boosting, in: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery (ECML/PKDD), 2000, pp. 299–308.
    R.G. Rossi, A.A. Lopes and S.O. Rezende, Optimization and label propagation in bipartite heterogeneous networks to improve transductive classification of texts, Information Processing & Management 52(2) (2016), 217–257.
    N. Roy and A. McCallum, Toward optimal active learning through sampling estimation of error reduction, in: Proceedings of the International Conference on Machine Learning (ICML), 2001, pp. 441–448.
    P.T.M. Saito, C.T.N. Suzuki, J.F. Gomes, P.J. de Rezende and A.X. Falcão, Robust active learning for the diagnosis of parasites, Pattern Recognition, 2015.
    Autor: Settles
    Título: Active learning literature survey
    Título do periódico: University of Wisconsin, Madison
    Primeira página: 65
    Ano: 2010
    B. Settles and M. Craven, An analysis of active learning strategies for sequence labeling tasks, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2008, pp. 1070–1079.
    B. Settles, M. Craven and L. Friedland, Active learning with real annotation costs, in: Proceedings of the NIPS Workshop on Cost-Sensitive Learning, 2008, pp. 1–10.
    B. Settles, M. Craven and S. Ray, Multiple-instance active learning, in: Advances in Neural Information Processing Sytems, 2008, pp. 1289–1296.
    H.S. Seung, M. Opper and H. Sompolinsky, Query by committee, in: Proceedings of the Workshop on Computational Learning Theory, 1992, pp. 287–294.
    M. Shokoohi-Yekta, J. Wang and E. Keogh, On the Non-Trivial Generalization of Dynamic Time Warping to the Multi-Dimensional Case, in: Proceedings of the SIAM International Conference on Data Mining (SDM), 2015, pp. 289–297.
    D.F. Silva, V.M.A. Souza and G.E.A.P.A. Batista, Time series classification using compression distance of recurrence plots, in: Proceedings of the International Conference on Data Mining (ICDM), 2013, pp. 687–696.
    D.F. Silva, V.M.A. Souza, G.E.A.P.A. Batista, E. Keogh and D.P.W. Ellis, Applying machine learning and audio analysis techniques to insect recognition in intelligent traps, in: Proceedings of the International Conference on Machine Learning and Applications (ICMLA), Vol. 1, 2013, pp. 99–104.
    Autor: Silva
    Título: Exploring low cost laser sensors to identify flying insect species
    Título do periódico: Journal of Intelligent & Robotic Systems
    Primeira página: 1
    Ano: 2014
    V.M.A. Souza, D.F. Silva and G.E.A.P.A. Batista, Classification of data streams applied to insect recognition: Initial results, in: Proceedings of the Brazilian Conference on Intelligent Systems (BRACIS), 2013, pp. 76–81.
    Autor: Taylor
    Título: Analysis of the effect of temperature on insects in flight
    Título do periódico: The Journal of Animal Ecology
    Primeira página: 99
    Ano: 1963
    DOI: 10.2307/2520
    H. Terasawa, M. Slaney and J. Berger, The thirteen colors of timbre, in: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2005, pp. 323–326.
    Autor: Tong
    Título: Support vector machine active learning with applications to text classification
    Título do periódico: Journal of Machine Learning Research
    Volume: 2
    Primeira página: 45
    Ano: 2002
    M. Vlachos, G. Kollios and D. Gunopulos, Discovering similar multidimensional trajectories, in: Proceedings of the International Conference on Data Engineering (ICDE), 2002, pp. 673–684.
    Autor: Ward
    Título: Jr., Hierarchical grouping to optimize an objective function
    Título do periódico: Journal of the American Statistical Association
    Volume: 58
    Fascículo: 301
    Primeira página: 236
    Ano: 1963
    DOI: 10.1080/01621459.1963.10500845
    Y. Wu and E.Y. Chang, Distance-function design and fusion for sequence data, in: Proceedings of the ACM international conference on Information and knowledge management (CIKM), 2004, pp. 324–333.
    X. Xi, E. Keogh, C. Shelton, L. Wei and C.A. Ratanamahatana, Fast time series classification using numerosity reduction, in: Proceedings of the International Conference on Machine learning (ICML), 2006, pp. 1033–1040.
    R. Yan, J. Yang and A. Hauptmann, Automatically labeling video data using multi-class active learning, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2003, pp. 516–523.
    W. Yuan, Y. Han, D. Guan, S. Lee and Y. Lee, Initial training data selection for active learning, in: Proceedings of the International Conference on Ubiquitous Information Management and Communication (IMCOM), 2011, p. 5.
    Autor: Zhen
    Título: On the importance of components of the mfcc in speech and speaker recognition
    Título do periódico: Acta Scientiarum Naturalium
    Volume: 37
    Fascículo: 3
    Primeira página: 371
    Ano: 2001
    D. Zhou, O. Bousquet, N. Lal, J. Weston and B. Schölkopf, Learning with local and global consistency, Advances in Neural Information Processing Systems 16(16) (2004), 321–328.
    J. Zhu, H. Wang, T. Yao and B.K. Tsou, Active learning with sampling by uncertainty and density for word sense disambiguation and text classification, in: Proceedings of the International Conference on Computational Linguistics (COLING), 2008, pp. 1137–1144.
    X. Zhu, Z. Ghahramani and J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of the International Conference on Machine Learning (ICML), Vol. 3, 2003, pp. 912–919.
    X. Zhu and A.B. Goldberg, Introduction to Semi-Supervised Learning, Morgan and Claypool Publishers, 2009.
    X. Zhu, P. Zhang, X. Lin and Y. Shi, Active learning from data streams, in: Proceedings of the International Conference on Data Mining (ICDM), 2007, pp. 757–762.