Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Exercise training and epigenetic regulation: multilevel modification and regulation of gene expression (2017)

  • Authors:
  • USP affiliated authors: OLIVEIRA, EDILAMAR MENEZES DE - EEFE
  • USP Schools: EEFE
  • DOI: 10.1007/978-981-10-4304-8_16
  • Subjects: EXERCÍCIO FÍSICO; EXPRESSÃO GÊNICA; GENÉTICA MOLECULAR; GENES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/978-981-10-4304-8_16 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EEFE2863974-10PRO 2017 130
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOCI, Ursula Paula Renó; MELO, Stephano Freitas Soares; GOMES, João Lucas Penteado; et al. Exercise training and epigenetic regulation: multilevel modification and regulation of gene expression. In: Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000[S.l: s.n.], 2017.Disponível em: DOI: 10.1007/978-981-10-4304-8_16.
    • APA

      Soci, U. P. R., Melo, S. F. S., Gomes, J. L. P., Silveira, A. C., Nóbrega, C., & Oliveira, E. M. de. (2017). Exercise training and epigenetic regulation: multilevel modification and regulation of gene expression. In Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Singapore. doi:10.1007/978-981-10-4304-8_16
    • NLM

      Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, Oliveira EM de. Exercise training and epigenetic regulation: multilevel modification and regulation of gene expression [Internet]. In: Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Singapore: 2017. Available from: https://doi.org/10.1007/978-981-10-4304-8_16
    • Vancouver

      Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, Oliveira EM de. Exercise training and epigenetic regulation: multilevel modification and regulation of gene expression [Internet]. In: Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Singapore: 2017. Available from: https://doi.org/10.1007/978-981-10-4304-8_16

    Referências citadas na obra
    Hawley JA, Hargreaves M, Joyner MJ et al (2014) Integrative biology of exercise. Cell 159(4):738–749
    Bernardo BC, Weeks KL, Pretorius L et al (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227
    Hargreaves M (2015) Exercise and gene expression. Prog Mol Biol Transl Sci 135:457–469
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395
    Varley KE, Gertz J, Bowling KM et al (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 23(3):555–567
    Denham J, Marques FZ, O'Brien BJ et al (2014) Exercise: putting action into our epigenome. Sports Med 44(2):189–209
    Zimmer P, Bloch W (2015) Physical exercise and epigenetic adaptations of the cardiovascular system. Herz 40(3):353–360
    Howell PM, Liu SH, Ren SP et al (2009) Epigenetics in human melanoma. Cancer Control 16(3):200–218
    Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. EMBO Rep 12(7):620
    Tong JJ, Liu J, Bertos NR et al (2002) Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res 30(5):1114–1123
    Webster AL, Yan MS, Marsden PA (2013) Epigenetics and cardiovascular disease. Can J Cardiol 29(1):46–57
    Jiang YZ, Manduchi E, Jimenez JM et al (2015) Endothelial epigenetics in biomechanical stress: disturbed flow-mediated epigenomic plasticity in vivo and in vitro. Arterioscler Thromb Vasc Biol 35(6):1317–1326
    Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398
    Turgeon PJ, Sukumar AN, Marsden PA (2014) Epigenetics of cardiovascular disease – a new “beat” in coronary artery disease. Med Epigenet 2(1):37–52
    Nuhrenberg T, Gilsbach R, Preissl S et al (2014) Epigenetics in cardiac development, function, and disease. Cell Tissue Res 356(3):585–600
    Han H, Cortez CC, Yang X et al (2011) DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet 20(22):4299–4310
    Nan X, Ng HH, Johnson CA et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389
    Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022
    Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21
    Caiafa P, Zampieri M (2005) DNA methylation and chromatin structure: the puzzling CpG islands. J Cell Biochem 94(2):257–265
    Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18(19):2315–2335
    Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162
    Hermann A, Schmitt S, Jeltsch A (2003) The human Dnmt2 has residual DNA-(Cytosine-C5) methyltransferase activity. J Biol Chem 278(34):31717–31721
    Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993
    Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463
    Wang H, Wang L, Erdjument-Bromage H et al (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431(7010):873–878
    Cao J (2014) The functional role of long non-coding RNAs and epigenetics. Biol Proced Online 16:11
    Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8(4):307–318
    Suetake I, Shinozaki F, Miyagawa J et al (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279(26):27816–27823
    Nimura K, Ishida C, Koriyama H et al (2006) Dnmt3a2 targets endogenous Dnmt3L to ES cell chromatin and induces regional DNA methylation. Genes Cells 11(10):1225–1237
    Okano M, Xie S, Li E (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res 26(11):2536–2540
    Branco MR, Ficz G, Reik W (2011) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7–13
    Koh KP, Yabuuchi A, Rao S et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213
    Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402
    Wu H, D'Alessio AC, Ito S et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473(7347):389–393
    Dawlaty MM, Ganz K, Powell BE et al (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9(2):166–175
    Szwagierczak A, Bultmann S, Schmidt CS et al (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38(19):e181
    Munzel M, Globisch D, Carell T (2011) 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 50(29):6460–6468
    Li Z, Cai X, Cai CL et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118(17):4509–4518
    Quivoron C, Couronne L, Della Valle V et al (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20(1):25–38
    Moran-Crusio K, Reavie L, Shih A et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20(1):11–24
    Wossidlo M, Nakamura T, Lepikhov K et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241
    Iqbal K, Jin SG, Pfeifer GP et al (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. P Natl Acad Sci USA 108(9):3642–3647
    TP G, Guo F, Yang H et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477(7366):606–610
    Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci U S A 51:786–794
    Bentley GA, Lewit-Bentley A, Finch JT et al (1984) Crystal structure of the nucleosome core particle at 16 a resolution. J Mol Biol 176(1):55
    Chen CC, Mellone BG (2016) Chromatin assembly: journey to the CENter of the chromosome. J Cell Biol 214(1):13–24
    Wilhelm FX, Wilhelm ML, Erard M et al (1978) Reconstitution of chromatin: assembly of the nucleosome. Nucleic Acids Res 5(2):505–521
    Haushalter KA, Kadonaga JT (2003) Chromatin assembly by DNA-translocating motors. Nat Rev Mol Cell Biol 4(8):613–620
    Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100
    Parthun MR (2007) Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26(37):5319–5328
    Hodawadekar SC, Marmorstein R (2007) Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26(37):5528–5540
    Tjeertes JV, Miller KM, Jackson SP (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28(13):1878–1889
    Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318
    Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42
    Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23(3):289–296
    Vega RB, Matsuda K, Oh J et al (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119(4):555–566
    Fischle W, Dequiedt F, Hendzel MJ et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9(1):45–57
    Tang X, Gao JS, Guan YJ et al (2007) Acetylation-dependent signal transduction for type I interferon receptor. Cell 131(1):93–105
    Zhang X, Yuan Z, Zhang Y et al (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27(2):197–213
    Kovacs JJ, Murphy PJ, Gaillard S et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18(5):601–607
    Matsuyama A, Shimazu T, Sumida Y et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21(24):6820–6831
    Liu H, Hu Q, Kaufman A et al (2008) Developmental expression of histone deacetylase 11 in the murine brain. J Neurosci Res 86(3):537–543
    Haigis MC, Mostoslavsky R, Haigis KM et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954
    North BJ, Verdin E (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5(5):224
    Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798
    Anderson RM, Bitterman KJ, Wood JG et al (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423(6936):181–185
    Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7(2):104–112
    Dawson MA, Bannister AJ, Gottgens B et al (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461(7265):819–822
    Hu S, Xie Z, Onishi A et al (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139(3):610–622
    Sugiyama K, Sugiura K, Hara T et al (2002) Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene 21(20):3103–3111
    Goto H, Yasui Y, Nigg EA et al (2002) Aurora-B phosphorylates histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7(1):11–17
    Cuthbert GL, Daujat S, Snowden AW et al (2004) Histone deimination antagonizes arginine methylation. Cell 118(5):545–553
    Wang Y, Wysocka J, Sayegh J et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306(5694):279–283
    Sakabe K, Wang ZH, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. P Natl Acad Sci USA 107(46):19915–19920
    Hassa PO, Haenni SS, Elser M et al (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol R 70(3):789–829
    Cohen-Armon M, Visochek L, Rozensal D et al (2007) DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell 25(2):297–308
    Krishnakumar R, Kraus WL (2010) PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell 39(5):736–749
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479
    Lee JS, Shukla A, Schneider J et al (2007) Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131(6):1084–1096
    Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4(9):690–699
    Shilo Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. P Natl Acad Sci USA 100(23):13225–13230
    Nathan D, Ingvarsdottir K, Sterner DE et al (2006) Histone sumoylation is a negative regulator in Saccharomyces Cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20(8):966–976
    Allis CD, Wiggins JC (1984) Proteolytic processing of micronuclear H3 and histone phosphorylation during conjugation in Tetrahymena Thermophila. Exp Cell Res 153(2):287–298
    Santos-Rosa H, Kirmizis A, Nelson C et al (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16(1):17–22
    Duncan EM, Muratore-Schroeder TL, Cook RG et al (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135(2):284–294
    Chen ZZ, Zang JY, Whetstine J et al (2006) Structural insights into histone demethylation by JMJD2 family members. Cell 125(4):691–702
    Nelson CJ, Santos-Rosa H, Kouzarides T (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126(5):905–916
    Costa FF (2008) Non-coding RNAs, epigenetics and complexity. Gene 410(1):9–17
    Chen J, Xue Y (2016) Emerging roles of non-coding RNAs in epigenetic regulation. Sci China Life Sci 59(3):227–235
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531
    Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486
    Xue Y, Ouyang K, Huang J et al (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152(1-2):82–96
    Benetti R, Gonzalo S, Jaco I et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(9):998
    Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 12(7):647–656
    Garzon R, Liu S, Fabbri M et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113(25):6411–6418
    Hall IM, Shankaranarayana GD, Noma K et al (2002) Establishment and maintenance of a heterochromatin domain. Science 297(5590):2232–2237
    Volpe TA, Kidner C, Hall IM et al (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297(5588):1833–1837
    Noma K, Sugiyama T, Cam H et al (2004) RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 36(11):1174–1180
    Verdel A, Jia S, Gerber S et al (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303(5658):672–676
    Motamedi MR, Verdel A, Colmenares SU et al (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119(6):789–802
    Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299(5607):716–719
    Huang XA, Yin H, Sweeney S et al (2013) A major epigenetic programming mechanism guided by piRNAs. Dev Cell 24(5):502–516
    Huang ZP, Chen J, Seok HY et al (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112(9):1234–1243
    Rajasethupathy P, Antonov I, Sheridan R et al (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707
    Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641
    Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358
    Engreitz JM, Haines JE, Perez EM et al (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539(7629):452–455
    van Weerd JH, Koshiba-Takeuchi K, Kwon C et al (2011) Epigenetic factors and cardiac development. Cardiovasc Res 91(2):203–211
    Martinez SR, Gay MS, Zhang L (2015) Epigenetic mechanisms in heart development and disease. Drug Discov Today 20(7):799–811
    Kaliman P, Parrizas M, Lalanza JF et al (2011) Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res Rev 10(4):475–486
    van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579
    Fernandes T, Barauna VG, Negrao CE et al (2015) Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol-Heart C 309(4):H543–H552
    Soci UP, Fernandes T, Hashimoto NY et al (2011) MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 43(11):665–673
    Melo SF, Fernandes T, Barauna VG et al (2014) Expression of MicroRNA-29 and collagen in cardiac muscle after swimming training in myocardial-infarcted rats. Cell Physiol Biochem 33(3):657–669
    D'Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30(6):230–236
    Papait R, Cattaneo P, Kunderfranco P et al (2013) Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 110(50):20164–20169
    George K, Spence A, Naylor LH et al (2011) Cardiac adaptation to acute and chronic participation in endurance sports. Heart 97(24):1999–2004
    Ling C, Ronn T (2014) Epigenetic adaptation to regular exercise in humans. Drug Discov Today 19(7):1015–1018
    Scharhag J, George K, Shave R et al (2008) Exercise-associated increases in cardiac biomarkers. Med Sci Sports Exerc 40(8):1408–1415
    Weiner RB, Baggish AL (2012) Exercise-induced cardiac remodeling. Prog Cardiovasc Dis 54(5):380–386
    Diffee GM (2004) Adaptation of cardiac myocyte contractile properties to exercise training. Exerc Sport Sci Rev 32(3):112–119
    Green DJ, Naylor LH, George K (2006) Cardiac and vascular adaptations to exercise. Curr Opin Clin Nutr Metab Care 9(6):677–684
    Matkovich SJ, Hu Y, Dorn GW 2nd (2013) Regulation of cardiac microRNAs by cardiac microRNAs. Circ Res 113(1):62–71
    Bye A, Langaas M, Hoydal MA et al (2008) Aerobic capacity-dependent differences in cardiac gene expression. Physiol Genomics 33(1):100–109
    Fernandes T, Hashimoto NY, Magalhaes FC et al (2011) Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7). Hypertension 58(2):182–189
    van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. P Natl Acad Sci USA 103(48):18255–18260
    Fernandes T, Soci UP, Oliveira EM (2011) Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 44(9):836–847
    Chang S, McKinsey TA, Zhang CL et al (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24(19):8467–8476
    McGee SL, Swinton C, Morrison S et al (2014) Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress. FASEB J 28(8):3384–3395
    Montgomery RL, Davis CA, Potthoff MJ et al (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21(14):1790–1802
    Zhang CL, McKinsey TA, Chang SR et al (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4):479–488
    Recchioni R, Marcheselli F, Antonicelli R et al (2016) Physical activity and progenitor cell-mediated endothelial repair in chronic heart failure: is there a role for epigenetics? Mech Ageing Dev 159:71–80
    Soci UP, Fernandes T, Barauna VG et al (2016) Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin Sci (Lond) pii:CS20160480
    Samitz G, Egger M, Zwahlen M (2011) Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol 40(5):1382–1400
    Agarwal SK (2012) Cardiovascular benefits of exercise. Int J Gen Med 5:541–545
    Cooney JK, Law R-J, Matschke V et al (2011) Benefits of exercise in rheumatoid arthritis. J Aging Res 2011:1–14
    Denham J, O'Brien BJ, Harvey JT et al (2015) Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics 7(5):717–731
    McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol P 34(4):255–262
    Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358(13):1370–1380
    Cox EJ, Marsh SA (2013) Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 12:101
    Abdellatif M (2012) Differential expression of microRNAs in different disease states. Circ Res 110(4):638–650
    van Rooij E (2012) Introduction to the series on MicroRNAs in the cardiovascular system. Circ Res 110(3):481–482
    Liu X, Xiao J, Zhu H et al (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21(4):584
    Ramasamy S, Velmurugan G, Shanmugha Rajan K et al (2015) MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS One 10(3):e0121401
    Ellison GM, Waring CD, Vicinanza C et al (2012) Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart 98(1):5–10
    Silva DA, ND J, Fernandes T, Soci UP et al (2012) Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc 44(8):1453–1462
    Grans CF, Feriani DJ, Abssamra ME et al (2014) Resistance training after myocardial infarction in rats: its role on cardiac and autonomic function. Arq Bras Cardiol 103(1):60–68
    Wise FM, Patrick JM (2011) Resistance exercise in cardiac rehabilitation. Clin Rehabil 25(12):1059–1065
    Petriz BA, Franco OL (2014) Effects of hypertension and exercise on cardiac proteome remodelling. Biomed Res Int 2014:634132
    Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262
    Haykowsky MJ, Dressendorfer R, Taylor D et al (2002) Resistance training and cardiac hypertrophy: unravelling the training effect. Sports Med 32(13):837–849
    Tamaki T, Uchiyama S, Nakano S (1992) A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med Sci Sports Exerc 24(8):881–886
    Barauna VG, Batista ML Jr, Costa Rosa LF et al (2005) Cardiovascular adaptations in rats submitted to a resistance-training model. Clin Exp Pharmacol Physiol 32(4):249–254
    Fagard RH (1996) Athlete’s heart: a meta-analysis of the echocardiographic experience. Int J Sports Med 17(S 3):S140–S144
    Pluim BM, Zwinderman AH, van der Laarse A et al (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 101(3):336–344
    Melo SFS, Barauna VG, Carneiro MA et al (2015) Resistance training regulates cardiac function through modulation of miRNA-214. Int J Mol Sci 16(4):6855–6867
    van Rooij E, Olson EN (2012) MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11(11):860–872
    Seok HY, Chen J, Kataoka M et al (2014) Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ Res 114(10):1585–1595
    Sayed D, Hong C, Chen IY et al (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424
    Care A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618
    van Rooij E, Quiat D, Johnson BA et al (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17(5):662–673
    Shieh JT, Huang Y, Gilmore J et al (2011) Elevated miR-499 levels blunt the cardiac stress response. PLoS One 6(5):e19481
    De CCEPR, Padilha AS, de Oliveira EM et al (2008) Cardiovascular adaptive responses in rats submitted to moderate resistance training. Eur J Appl Physiol 103(5):605–613
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205
    Gurha P, Abreu-Goodger C, Wang T et al (2012) Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 125(22):2751–2761
    Wahlquist C, Jeong D, Rojas-Munoz A et al (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508(7497):531–535
    Aurora AB, Mahmoud AI, Luo X et al (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest 122(4):1222–1232
    Ahima RS, Park HK (2015) Connecting myokines and metabolism. Endocrinol Metab (Seoul) 30(3):235–245
    Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37
    Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89(2):381–410
    Nicoletti I, Cicoira M, Zanolla L et al (2003) Skeletal muscle abnormalities in chronic heart failure patients: relation to exercise capacity and therapeutic implications. Congest Heart Fail 9(3):148–154
    Groarke JD, Cheng S, Jones LW, et al (2013) Cancer cachexia: getting to the heart of the matter. Eur Heart J. doi: 10.1093/eurheartj/eht424
    Sandri M (2016) Protein breakdown in cancer cachexia. Semin Cell Dev Biol 54:11–19
    Morley JE, Malmstrom TK (2013) Frailty, sarcopenia, and hormones. Endocrinol Metab Clin N Am 42(2):391–405
    Lim JP, Leung BP, Ding YY et al (2015) Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity. Clin Interv Aging 10:605–609
    Frisbee JC, Goodwill AG, Frisbee SJ et al (2014) Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. Am J Physiol Heart Circ Physiol 307(12):H1714–H1728
    Walsh ME, Van Remmen H (2016) Emerging roles for histone deacetylases in age-related muscle atrophy. Nutr Healthy Aging 4(1):17–30
    Beharry AW, Judge AR (2015) Differential expression of HDAC and HAT genes in atrophying skeletal muscle. Muscle Nerve 52(6):1098–1101
    Ruas JL, White JP, Rao RR et al (2012) A PGC-1 alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331
    Fernandes T, Magalhaes FC, Roque FR et al (2012) Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, −21, and −126. Hypertension 59(2):513–520
    Egan B, Carson BP, Garcia-Roves PM et al (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor. Coactivator-1 alpha mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol-London 588(10):1779–1790
    Latres E, Amini AR, Amini AA et al (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280(4):2737–2744
    Goodman CA, McNally RM, Hoffmann FM et al (2013) Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo. Mol Endocrinol 27(11):1946–1957
    Cho H, Thorvaldsen JL, Chu QW et al (2001) Akt1/PKB alpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276(42):38349–38352
    Bodine SC, Stitt TN, Gonzalez M et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019
    Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380(2):297–309
    Schnyder S, Handschin C (2015) Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone 80:115–125
    Tyagi SC, Joshua IG (2014) Exercise and nutrition in myocardial matrix metabolism, remodeling, regeneration, epigenetics, microcirculation, and muscle. Can J Physiol Pharmacol 92(7):521–523
    Veeranki S, Winchester LJ, Tyagi SC (2015) Hyperhomocysteinemia associated skeletal muscle weakness involves mitochondrial dysfunction and epigenetic modifications. Biochim Biophys Acta 1852(5):732–741
    Brown WM (2015) Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med 49(24):1567–1578
    Voisin S, Eynon N, Yan X et al (2015) Exercise training and DNA methylation in humans. Acta Physiol (Oxf) 213(1):39–59
    Edgett BA, Foster WS, Hankinson PB et al (2013) Dissociation of increases in PGC-1alpha and its regulators from exercise intensity and muscle activation following acute exercise. PLoS One 8(8):e71623
    Brown DM, Goljanek-Whysall K (2015) microRNAs: modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev 24(Pt B):263–273
    Horak M, Novak J, Bienertova-Vasku J (2016) Muscle-specific microRNAs in skeletal muscle development. Dev Biol 410(1):1–13
    Goljanekwhysall K, Sweetman D, Abuelmagd M et al (2011) MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc Natl Acad Sci 108(29):11936
    Liu N, Williams AH, Maxeiner JM et al (2012) microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Investig 122(6):2054
    Luo Y, Wu X, Ling Z et al (2015) microRNA133a targets Foxl2 and promotes differentiation of C2C12 into myogenic progenitor cells. Dna & Cell Biol 34(1):29
    Nakasa T, Ishikawa M, Shi M et al (2010) Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. Journal of cellular. Mol Med 14(10):2495–2505
    Baggish AL, Park J, Min PK et al (2014) Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J Appl Physiol (1985) 116(5):522–531
    Mooren FC, Viereck J, Kruger K et al (2014) Circulating micrornas as potential biomarkers of aerobic exercise capacity. Am J Physiol-Heart C 306(4):H557–H563
    Yu H, Lu Y, Li Z et al (2014) microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer. Curr Drug Targets 15(9):817–828
    Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12(9):504
    Russell AP, Lamon S, Boon H et al (2013) Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol 591(18):4637–4653
    McGee SL, Fairlie E, Garnham AP et al (2009) Exercise-induced histone modifications in human skeletal muscle. J Physiol 587(24):5951–5958
    Bongers KS, Fox DK, Ebert SM et al (2013) Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol-Endoc M 305(7):E907–E915
    Winbanks CE, Beyer C, Hagg A et al (2013) miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4. PLoS One 8(9):e73589
    Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564
    Tennant M, McGeachie JK (1990) Blood vessel structure and function: a brief update on recent advances. Aust N Z J Surg 60(10):747–753
    Melo RM, Martinho E Jr, Michelini LC (2003) Training-induced, pressure-lowering effect in SHR: wide effects on circulatory profile of exercised and nonexercised muscles. Hypertension 42(4):851–857
    Nazari-Jahantigh M, Wei Y, Schober A (2012) The role of microRNAs in arterial remodelling. Thromb Haemost 107(4):611–618
    Hartmann D, Thum T (2011) MicroRNAs and vascular (dys)function. Vasc Pharmacol 55(4):92–105
    Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14
    Neth P, Nazari-Jahantigh M, Schober A et al (2013) MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 99(2):294–303
    Nguyen A, Leblond F, Mamarbachi M et al (2016) Age-dependent demethylation of Sod2 promoter in the mouse femoral artery. Oxidative Med Cell Longev 2016:8627384
    Moroz P, Le MT, Norman PE (2007) Homocysteine and abdominal aortic aneurysms. ANZ J Surg 77(5):329–332
    Guthikonda S, Haynes WG (2006) Homocysteine: role and implications in atherosclerosis. Curr Atheroscler Rep 8(2):100–106
    Ovechkin AV, Tyagi N, Sen U et al (2006) 3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. Am J Physiol Lung Cell Mol Physiol 291(5):L905–L911
    Fernandes T, Barauna VG, Negrao CE et al (2015) Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol 309(4):H543–H552
    Koutroumpi M, Dimopoulos S, Psarra K et al (2012) Circulating endothelial and progenitor cells: evidence from acute and long-term exercise effects. World J Cardiol 4(12):312–326
    Illi B, Nanni S, Scopece A et al (2003) Shear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression. Circ Res 93(2):155–161
    Nualnim N, Barnes JN, Tarumi T et al (2011) Comparison of central artery elasticity in swimmers, runners, and the sedentary. Am J Cardiol 107(5):783–787
    Maeda S, Tanabe T, Otsuki T et al (2004) Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res 27(12):947–953
    Silva JF, Rocha NG, Nobrega AC (2012) Mobilization of endothelial progenitor cells with exercise in healthy individuals: a systematic review. Arq Bras Cardiol 98(2):182–191
    Heo JB, Lee YS, Sung S (2013) Epigenetic regulation by long noncoding RNAs in plants. Chromosom Res 338(6):1435–1439
    Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116(4):737–750
    Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342
    XD W, Zeng K, Liu WL et al (2014) Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. Int J Sports Med 35(4):344–350
    Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284
    Staszel T, Zapala B, Polus A et al (2011) Role of microRNAs in endothelial cell pathophysiology. Pol Arch Med Wewn 121(10):361–366
    Wang S, Aurora AB, Johnson BA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271
    Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79(4):581–588
    Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104(4):442–454
    Quintavalle C, Garofalo M, Croce CM et al (2011) “ApoptomiRs” in vascular cells: their role in physiological and pathological angiogenesis. Vasc Pharmacol 55(4):87–91
    Chamorro-Jorganes A, Araldi E, Penalva LO et al (2011) MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 31(11):2595–2606
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949
    Sen CK, Gordillo GM, Khanna S et al (2009) Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 46(6):527–540
    Les Laboratoires Servier (2017) Servier. http://www.servier.com/Powerpoint-image-bank . Accessed 14 Feb 2017