Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization (2018)

  • Authors:
  • USP affiliated authors: SOBRAL, PAULO JOSE DO AMARAL - FZEA
  • USP Schools: FZEA
  • DOI: 10.1007/s11947-017-2016-y
  • Subjects: EMULSÕES (FORMAS FARMACÊUTICAS); HOMOGENEIZAÇÃO; PIMENTA; QUÍMICA COLOIDAL; INDÚSTRIA DE ALIMENTOS; MICROSCOPIA ELETRÔNICA
  • Keywords: Emulsion; Colloidal systems
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11947-017-2016-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s11947-017-2016-y (Fonte: Unpaywall API)

    Título do periódico: Food and Bioprocess Technology

    ISSN: 1935-5130,1935-5149



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Food and Bioprocess Technology

    ISSN: 1935-5130

    Citescore - 2017: 3.14

    SJR - 2017: 1.29

    SNIP - 2017: 1.194


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FZEA2864029-10PCD^2018^Dev
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GALVÃO, Karen Cristine Santos; VICENTE, António Augusto Martins de Oliveira Soares; SOBRAL, Paulo José do Amaral. Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization. Food and Bioprocess Technology, New York, v. 11, n. 2, p. 355-367, 2018. Disponível em: < https://doi.org/10.1007/s11947-017-2016-y > DOI: 10.1007/s11947-017-2016-y.
    • APA

      Galvão, K. C. S., Vicente, A. A. M. de O. S., & Sobral, P. J. do A. (2018). Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization. Food and Bioprocess Technology, 11( 2), 355-367. doi:10.1007/s11947-017-2016-y
    • NLM

      Galvão KCS, Vicente AAM de OS, Sobral PJ do A. Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization [Internet]. Food and Bioprocess Technology. 2018 ; 11( 2): 355-367.Available from: https://doi.org/10.1007/s11947-017-2016-y
    • Vancouver

      Galvão KCS, Vicente AAM de OS, Sobral PJ do A. Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization [Internet]. Food and Bioprocess Technology. 2018 ; 11( 2): 355-367.Available from: https://doi.org/10.1007/s11947-017-2016-y

    Referências citadas na obra
    Anarjan, N., Mirhousseini, H., Baharin, B. S., & Lupton, C. P. (2010). Effect of processing conditions on physicochemical properties of astaxanthin nanodispersions. Food Chemistry, 123(2), 477–483. https://doi.org/10.1016/j.foodchem.2010.05.036 .
    Anton, N., & Vandamme, T. F. (2011). Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharmaceutical Research, 28, 978–985. https://doi.org/10.1007/s11095-010-0309-1 .
    Aoki, T., Decker, E. A., & McClements, D. J. (2005). Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocolloids, 19(2), 209–220. https://doi.org/10.1016/j.foodhyd.2004.05.006 .
    Bernardi, D. S., Pereira, T. A., Maciel, N. R., Bortoloto, J., Vieira, G. S., Oliveira, G. C., et al. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 9(44), 1–9. https://doi.org/10.1186/1477-3155-9-44 .
    Boyd, J., Parkinson, C., & Sherman, P. (1972). Factors affecting emulsion stability and the HLB concept. Journal of Colloid and Interface Science, 41(2), 359–370. https://doi.org/10.1016/0021-9797(72)90122-1 .
    Cheong, J. N., Tan, C. P., Man, Y. B. C., & Misran, M. (2008). α-Tocopherol nanodispersions: preparation, characterization and stability evaluation. Journal of Food Engineering, 89(2), 204–209. https://doi.org/10.1016/j.jfoodeng.2008.04.018 .
    Choi, A. J., Kim, C. J., Cho, Y. J., Hwang, J. K., & Kim, C. (2009). Effects of surfactants on the formation and stability of capsaicin-loaded nanoemulsions. Food Science and Biotechnology, Korea, 18(5), 1161–1172.
    Costa, L. M., Moura, N. F., Marangoni, C., Mendes, C. E., & Teixeira, A. O. (2009). Atividade antioxidante de pimentas do gênero Capsicum. Ciência e Tecnologia de Alimentos, 30(1), 51–59. https://doi.org/10.1590/S0101-20612009005000004 .
    Donsi, F., Wang, Y. & Huang, Q. (2011). Freeze-thaw stability of lecithin and modified starch-based nanoemulsions. 25, 1327–1336.doi: https://doi.org/10.1016/j.foodhyd.2010.12.008 .
    Ernandes, F. M. P. G., & Garcia-Cruz, C. H. (2007). Atividade antimicrobiana de diversos óleos essenciais em microrganismos isolados do meio ambiente. Boletim do Centro de Pesquisa de Processamento de Alimentos, 25(2), 193–206. https://doi.org/10.5380/cep.v25i2.9754 .
    Gullapali, R. P., & Sheth, B. B. (1999). Influence of an optimized non-ionic emulsifier blend on properties of oil-in-water emulsions. European Journal of Pharmaceutics and Biopharmaceutics, 48, 233–238. https://doi.org/10.1016/S0939-6411(99)00048-X .
    Guojun, L. V., Fumin, W., Cai, W., & Zhan, X. (2014). Characterization of the addition of lipophilic Span 80 to the gydrophilic Tween 80-stabilized emulsions. Colloids and Surfaces A: Physicochemical Engineering Aspects, 447, 8–13. https://doi.org/10.1016/j.colsurfa.2014.01.066 .
    Hsu, Q., & Nacu, A. (2003). Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. Journal of Colloids and Interface Sciences, 259, 374–381. https://doi.org/10.1016/S0021-9797(02)00207-2 .
    Huang, Q., Yu, H., & Ru, Q. (2009). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75(1), 50–57. https://doi.org/10.1111/j.1750-3841.2009.01457.x .
    Hung, Y., Kok, T. M., & Verbeke, W. (2016). Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite. Meat Science, 121, 119–126. https://doi.org/10.1016/j.meatsci.2016.06.002 .
    Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22, 1191–1202. https://doi.org/10.1016/j.foodhyd.2007.09.006 .
    Kentish, S., Wooster, T. J., Ashokkumar, S., Balachandran, R., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 9(2), 170–175. https://doi.org/10.1016/j.ifset.2007.07.005 .
    Klang, V., Matsko, N. B., Valenta, C., & Hofer, F. (2012). Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron, 43(2–3), 85–103. https://doi.org/10.1016/j.micron.2011.07.014 .
    Lee, S. J., & McClements, D. J. (2010). Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 24(6–7), 560–569. https://doi.org/10.1016/j.foodhyd.2010.02.002 .
    Lee, L., & Norton, I. T. (2013). Comparing droplet break-up for a high-pressure valve homogenizer and a microfluidizer for the potential production of food-grade nanoemulsions. Journal of Food Engineering, 114(2), 158–163. https://doi.org/10.1016/j.jfoodeng.2012.08.009 .
    Martillanes, S., Rocha-Pimienta, J.; Cabrera-Bañegil, M; Martín-Vertedor, D. & Delgado-Adámez, J. (2017). Application of phenolic compounds for food preservation: food additive and active packaging. In: Prof. Marcos Soto-Hernández (Ed.) Phenolic Compounds - Biological Activity. InTech, doi: https://doi.org/10.5772/66885 .
    Mason, T. G., Wilking, J. N., Meseson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), 635–666. https://doi.org/10.1088/0953-8984/18/41/R01 .
    Matsaridou, I., Panagiotis, B., Salis, A., & Nikolakakis, I. (2012). The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution. AAPS PharmSciTech, 13(4), 1319–1330. https://doi.org/10.1208/s12249-012-9855-7 .
    McClements, D. J. (2002). Colloidal basis of emulsion color. Current Opinion in Colloid and Interface Science, 7, 451–455. https://doi.org/10.1016/S1359-0294(02)00075-4 .
    McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8, 1719–1729. https://doi.org/10.1039/C2SM06903B .
    Mikula, R. J., & Munoz, V. A. (2000). Characterization of emulsions and suspensions in the petroleum industry using cryo-SEM and CLSM. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 174(1–2), 23–36. https://doi.org/10.1016/S0927-7757(00)00518-5 .
    Mun, S., Choi, Y., Park, K. H., Shim, J. Y., & Kim, Y. R. (2013). Influence of environmental stresses on the stability of W/O/W emulsions containing enzymatically modified starch. Carbohydrate Polymers, 92(2), 1503–1511.
    Nazarzadeh, E., Anthonypillai, T., & Sajjadi, S. (2013). On the growth mechanisms of nanoemulsions. Journal of Colloids and Interface Science, 397, 154–162. https://doi.org/10.1016/j.carbpol.2012.10.050 .
    Persson, K., Blute, I. A., Mira, I. C., & Gustafsson, J. (2014). Creation of well-defined particle stabilized oil-in-water nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 48–57. https://doi.org/10.1016/j.colsurfa.2014.06.034 .
    Preetz, C., Hauser, A., Hause, G., Kramer, A., & Mader, K. (2010). Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: distinction of nanoemulsions from nanocapsules. European Journal of Pharmaceutical Sciences, 39(1–3), 141–151. https://doi.org/10.1016/j.ejps.2009.11.009 .
    Prista, L. N., Alves, A. C., & Morgado, R. (1992). Técnica farmacêutica e farmácia galênica (4th ed.). Lisboa: Fundação Calouste Gulbenkian.
    Qian, C., & McClements, D. J. (2011). Formation of nanoemulsion stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting average droplet size. Food Hydrocolloids, 25(5), 1000–1008. https://doi.org/10.1016/j.foodhyd.2010.09.017 .
    Rao, J., & McClements, D. J. (2012). Lemon oil solubilization in mixed surfactant solutions: rationalizing microemulsion and nanoemulsion formation. Food Hydrocolloids, 26(1), 268–276. https://doi.org/10.1016/j.foodhyd.2011.06.002 .
    Reyes-Escogido, M. L., Gonzalez-Mondragon, E. G., & Vazquez-Tzompantzi, E. (2011). Chemical and pharmacological aspects of capsaicin. Molecules, 16, 1253–1270. https://doi.org/10.3390/molecules16021253 .
    Salvia-Trujillo, L., Rojas-Grau, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2013). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 30(1), 401–407. https://doi.org/10.1016/j.foodhyd.2012.07.004 .
    Saranya, S., Chansrasekaran, N., & Mukherjee, A. (2012). Antibacterial activity of eucalyptus oil nanoemulsion against Proteus Mirabilis. International Journal of Pharmacy and Pharmaceutical Sciences, 4(3), 668–671.
    Saupe, A., Gordon, K. C., & Rades, T. (2006). Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. International Journal od Pharmaceutics, Amsterdan, 314(1), 56–62. https://doi.org/10.1016/j.ijpharm.2006.01.022 .
    Schmidts, T., Dobler, D., Nissing, C., & Runkel, F. (2009). Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions. Journal of Colloid and Interface Science, 338(1), 184–192. https://doi.org/10.1016/j.jcis.2009.06.033 .
    Shantilal, J., & Bhattacharya, S. (2014). Nanoparticles and nanotechnology in food, in conventional and advanced food processing technologies. Chichester, UK: John Wiley and Sons Ltd. https://doi.org/10.1002/9781118406281.ch23 .
    Silva, F.J.F. et al. (2009). Determinação do potencial antioxidante do extrato filtrado de Capsicum baccatum (pimenta dedo-de-moça) através do método DPPH. In: SALÃO DE INICIAÇÃO CIENTÍFICA – PUCRS, 10.; Porto Alegre. Anais.
    Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M., et al. (2011). Nanoemulsions of b-carotene using high-energy emulsification-evaporation technique. Journal of Food Engineering, 102(2), 130–135. https://doi.org/10.1016/j.jfoodeng.2010.08.005 .
    Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2012). Nanoemulsions for food applications: development and characterization. Food Bioprocess Technology, 5(3), 854–867. https://doi.org/10.1007/s11947-011-0683-7 .
    Sivakumar, M., Tang, S. Y., & Tan, K. W. (2014). Cavitation technology—a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochemistry, 21(6), 2069–2083. https://doi.org/10.1016/j.ultsonch.2014.03.025 .
    Sricharoen, P., Lamaiphan, N., Patthawaro, P., Limchoowong, N., Techawongstien, S., et al. (2016). Phytochemicals in capsicum oleoresin from different varieties of hot chili peppers with their antidiabetic and antioxidant activities due to some phenolic compounds. Ultrasonics Sonochemistry, 38, 629–639. https://doi.org/10.1016/j.ultsonch.2016.08.018 .
    Takamura, A., Minow, I., Noro, S., & Kubo, T. (1979). Effects of Tween and Span group emulsifiers on the stability of O/W emulsions. Chemical and Pharmaceutical Bulletin, 27(12), 2921–2926. https://doi.org/10.1248/cpb.27.2921 .
    Takasui, F. CIE LAB: análise computacional de fotografias. 2011. Ms. Thesis – Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, 2011. Avaible in: http://www.foar.unesp.br/Home/Pos-Graduacao/LatoSensu/CienciasOdontologicas/takatsui_f_me_arafo.pdf . Acessed at 2016–07-02.
    Vargas, M., Cháfer, M., Albors, A., Chiralt, A., & González-Martínez, C. (2008). Physicochemical and sensory characteristics of yoghurt produced from mixtures of cows’ and goats’ milk. International Dairy Journal, 18(12), 1146–1152. https://doi.org/10.1016/j.idairyj.2008.06.007 .
    Wei, Y., Shuai, L., Guo, D., et al. (2006). Study on antibacterial activity of capsaicin. Food Science, 27(8), 76–78.
    Weiss, J., Takhistov, P., & McClements, D. J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9), 107–116. https://doi.org/10.1111/j.1750-3841.2006.00195.x .
    Xing, F., Cheng, G., & Yi, K. (2006). Study on the antimicrobial activities of the capsaicin microcapsules. Journal of Applied Polymer, 102, 1318–1321. https://doi.org/10.1002/app.23766 .
    Yang, Y., & McClements, D. J. (2013). Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocolloids, 30(2), 712–720. https://doi.org/10.1016/j.foodhyd.2012.09.003 .