Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Expression of two novel β-glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and characterization of the heterologous protein products (2016)

  • Authors:
  • USP affiliated authors: GOLDMAN, GUSTAVO HENRIQUE - FCFRP
  • USP Schools: FCFRP
  • DOI: 10.1007/s12033-016-9981-7
  • Subjects: ETANOL; TRICHODERMA; BIOCOMBUSTÍVEIS; ENZIMAS; EXPRESSÃO GÊNICA
  • Keywords: β-glucosidase; Chaetomium atrobrunneum; Termostática; Hidrólise do bioetanol; Thermostability; Bioethanol; Hydrolysis
  • Language: Inglês
  • Abstract: Duas novas glicogásinas termostáticas da família GH3 do fungo filamentoso Chaetomium atrobrunneum (CEL3a e CEL3b) foram expressas em Trichoderma reesei , purificadas por cromatografia de permuta iónica de dois passos e caracterizadas. Ambas as enzimas foram ativas em uma ampla gama de pH em comparação com Neurospora crassa β-glucosidase GH3-3, que também foi expressa em T. reesei e purificada. A temperatura ideal tanto de C. atrobrunneumas enzimas foram de cerca de 60 ° C a pH 5 e ambas as enzimas apresentaram melhor estabilidade térmica e pH e maior resistência aos compostos metálicos e à inibição da glicose do que a GH3-3. Eles também mostraram maior atividade contra os oligossacarídeos compostos por unidades de glicose e ligados a ligações β-1,4-glicosídicas e, além disso, apresentaram maior afinidade pela celotriose sobre celobiose. Em testes de hidrólise contra a celulose de Avicel e o bagaço de cana de cana explodida por vapor, realizada a 45 ° C, particularmente a enzima CEL3a realizou-se de forma semelhante à β-glucosidase de N. crassa GH3-3. Tendo em conta a estabilidade térmica das β-glucosidases de C. atrobrunneum , ambos representam alternativas promissoras como componentes da mistura enzimática para a sacarificação de celulose melhorada a temperaturas elevadas
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12033-016-9981-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12033-016-9981-7 (Fonte: Unpaywall API)

    Título do periódico: Molecular Biotechnology

    ISSN: 1073-6085,1559-0305



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Molecular Biotechnology

    ISSN: 1073-6085

    Citescore - 2017: 1.75

    SJR - 2017: 0.643

    SNIP - 2017: 0.625


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCFRP2867469pcd^2867469^Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      COLABARDINI, Ana C.; VALKONEN, Mari; HUUSKONEN, Anne; et al. Expression of two novel β-glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and characterization of the heterologous protein products. Molecular Biotechnology, Totowa, v. 58, n. 12, p. 821-831, 2016. Disponível em: < http://dx.doi.org/10.1007/s12033-016-9981-7 > DOI: 10.1007/s12033-016-9981-7.
    • APA

      Colabardini, A. C., Valkonen, M., Huuskonen, A., Siika-aho, M., Koivula, A., Goldman, G. H., & Saloheimo, M. (2016). Expression of two novel β-glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and characterization of the heterologous protein products. Molecular Biotechnology, 58( 12), 821-831. doi:10.1007/s12033-016-9981-7
    • NLM

      Colabardini AC, Valkonen M, Huuskonen A, Siika-aho M, Koivula A, Goldman GH, Saloheimo M. Expression of two novel β-glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and characterization of the heterologous protein products [Internet]. Molecular Biotechnology. 2016 ; 58( 12): 821-831.Available from: http://dx.doi.org/10.1007/s12033-016-9981-7
    • Vancouver

      Colabardini AC, Valkonen M, Huuskonen A, Siika-aho M, Koivula A, Goldman GH, Saloheimo M. Expression of two novel β-glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and characterization of the heterologous protein products [Internet]. Molecular Biotechnology. 2016 ; 58( 12): 821-831.Available from: http://dx.doi.org/10.1007/s12033-016-9981-7

    Referências citadas na obra
    Ankudimova, N. V., Baraznenok, V. A., Becker, E. G., & Okunev, O. N. (1999). Cellulase complex from Chaetomium cellulolyticum: Isolation and properties of major components. Biochemistry, 64, 1068–1073.
    Barron, M. A., Sutton, D. A., Veve, R., Guarro, J., Rinaldi, M., Thompson, E., et al. (2003). Invasive mycotic infections caused by Chaetomium perlucidum, a new agent of cerebral phaeohyphomycosis. Journal of Clinical Microbiology, 41, 5302–5307.
    Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial beta-glucosidases: cloning, properties, and applications. Critical Reviews in Biotechnology, 22, 375–407.
    Blumer-Schuette, S. E., Brown, S. D., Sander, K. B., Bayer, E. A., Kataeva, I., Zurawski, J. V., et al. (2014). Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews, 38, 393–448.
    Bohlin, C., Olsen, S. N., Morant, M. D., Patkar, S., Borch, K., & Westh, P. (2010). A comparative study of activity and apparent inhibition of fungal beta-glucosidases. Biotechnology and Bioengineering, 107, 943–952.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
    Canilha, L., Chandel, A. K., Milessi, T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., et al. (2012). Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology. doi: 10.1155/2012/989572 .
    Cuomo, C. A., Untereiner, W. A., Ma, L. J., Grabherr, M., & Birren, B. W. (2015). Draft genome sequence of the cellulolytic fungus Chaetomium globosum. Genome Announcements. doi: 10.1128/genomeA.00021-15 .
    de Giuseppe, P. O., Souza, T. A., Souza, F. H., Zanphorlin, L. M., Machado, C. B., Ward, R. J., et al. (2014). Structural basis for glucose tolerance in GH1 beta-glucosidases. Acta Crystallographica. Section D, Biological Crystallography, 70, 1631–1639.
    El-Gindy, A. A., Saad, R. R., & Fawzi, E. (2003). Purification and some properties of exo-1,4-beta-glucanase from Chaetomium olivaceum. Acta Microbiologica Polonica, 52, 35–44.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.
    Gietz, R. D. (2014). Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods in Molecular Biology, 1163, 33–44.
    Häkkinen, M., Arvas, M., Oja, M., Aro, N., Penttilä, M., Saloheimo, M., et al. (2012). Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microbial Cell Factories, 11, 134–160.
    Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2009). Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Applied Biochemistry and Biotechnology, 152, 88–107.
    Kim, I. J., Nam, K. H., Yun, E. J., Kim, S., Youn, H. J., Lee, H. J., et al. (2015). Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis. Applied Microbiology and Biotechnology, 99, 8537–8547.
    Kuhad, R. C., Singh, A., & Eriksson, K. E. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering/Biotechnology, 57, 45–125.
    Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35, 377–391.
    McIlvaine, T. C. (1921). A buffer solution for colorimetric comparaison. Journal of Biological Chemistry, 49, 183–186.
    Nevalainen, H., & Peterson, R. (2014). Making recombinant proteins in filamentous fungi-are we expecting too much? Front Microbiology, 5, 75.
    Papageorgiou, A. C., & Li, D. (2015). Expression, purification and crystallization of a family 55 beta-1,3-glucanase from Chaetomium thermophilum. Acta Crystallographica Section F: Structural Biology Communications, 71, 680–683.
    Penttilä, M., Nevalainen, H., Rättö, M., Salminen, E., & Knowles, J. (1987). A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 61, 155–164.
    Rahikainen, J., Moilanen, U., Nurmi-Rantala, S., Lappas, A., Koivula, A., Viikari, L., et al. (2013). Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresource Technology, 146, 118–125.
    Saloheimo, M., & Pakula, T. M. (2012). The cargo and the transport system: Secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology, 158, 46–57.
    Sipos, B., Benko, Z., Dienes, D., Réczey, K., Viikari, L., & Siika-aho, M. (2012). Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Applied Biochemistry and Biotechnology, 161, 347–364.
    Su, X., Schmitz, G., Zhang, M., Mackie, R. I., & Cann, I. K. (2012). Heterologous gene expression in filamentous fungi. Advances in Applied Microbiology, 81, 1–61.
    Sumner, J. B. (1924). The estimation of sugar in diabetic urine using dinitrosalicylic acid. Journal of Biological Chemistry, 62(2), 287–290.
    Teugjas, H., & Väljamäe, P. (2013). Selecting beta-glucosidases to support cellulases in cellulose saccharification. Biotechnology for Biofuels, 6, 105.
    Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2011). Heterologous expression and characterization of a glucose-stimulated beta-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 89, 1761–1771.
    Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2012). Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant beta-glucosidase from the termite Nasutitermes takasagoensis. Applied and Environment Microbiology, 78, 4288–4293.
    Wilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20, 295–299.
    Znameroski, E. A., Coradetti, S. T., Roche, C. M., Tsai, J. C., Iavarone, A. T., Cate, J. H., et al. (2012). Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proceedings of the National Academy of Sciences of the United States of America, 109, 6012–6017.