Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Ru(II)/diphenylphosphine/pyridine-6-thiolate complexes induce S-180 cell apoptosis through intrinsic mitochondrial pathway involving inhibition of Bcl-2 and p53/Bax activation (2018)

  • Authors:
  • USP affiliated authors: ELLENA, JAVIER ALCIDES - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s11010-017-3129-3
  • Subjects: SÍNTESE QUÍMICA; CRISTALOGRAFIA; ANTINEOPLÁSICOS
  • Keywords: Apoptosis; Sarcoma-180; Ru(II) complexes; Diphenylphosphine; Pyridine-6-thiolate
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11010-017-3129-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11010-017-3129-3 (Fonte: Unpaywall API)

    Título do periódico: Molecular and Cellular Biochemistry

    ISSN: 0300-8177,1573-4919



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Molecular and Cellular Biochemistry

    ISSN: 0300-8177

    Citescore - 2017: 2.71

    SJR - 2017: 1.003

    SNIP - 2017: 0.806


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89027190PROD027190
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PIRES, Wanessa Carvalho; LIMA, Benedicto Augusto Vieira; PEREIRA, Flávia de Castro; et al. Ru(II)/diphenylphosphine/pyridine-6-thiolate complexes induce S-180 cell apoptosis through intrinsic mitochondrial pathway involving inhibition of Bcl-2 and p53/Bax activation. Molecular and Cellular Biochemistry, New York, Springer, v. 438, n. Ja 2018, p. 199-217, 2018. Disponível em: < http://dx.doi.org/10.1007/s11010-017-3129-3 > DOI: 10.1007/s11010-017-3129-3.
    • APA

      Pires, W. C., Lima, B. A. V., Pereira, F. de C., Lima, A. P., Mello-Andrade, F., Silva, H. D., et al. (2018). Ru(II)/diphenylphosphine/pyridine-6-thiolate complexes induce S-180 cell apoptosis through intrinsic mitochondrial pathway involving inhibition of Bcl-2 and p53/Bax activation. Molecular and Cellular Biochemistry, 438( Ja 2018), 199-217. doi:10.1007/s11010-017-3129-3
    • NLM

      Pires WC, Lima BAV, Pereira F de C, Lima AP, Mello-Andrade F, Silva HD, Silva MM da, Colina-Vegas L, Ellena J, Batista AA, Silveira-Lacerda E de P. Ru(II)/diphenylphosphine/pyridine-6-thiolate complexes induce S-180 cell apoptosis through intrinsic mitochondrial pathway involving inhibition of Bcl-2 and p53/Bax activation [Internet]. Molecular and Cellular Biochemistry. 2018 ; 438( Ja 2018): 199-217.Available from: http://dx.doi.org/10.1007/s11010-017-3129-3
    • Vancouver

      Pires WC, Lima BAV, Pereira F de C, Lima AP, Mello-Andrade F, Silva HD, Silva MM da, Colina-Vegas L, Ellena J, Batista AA, Silveira-Lacerda E de P. Ru(II)/diphenylphosphine/pyridine-6-thiolate complexes induce S-180 cell apoptosis through intrinsic mitochondrial pathway involving inhibition of Bcl-2 and p53/Bax activation [Internet]. Molecular and Cellular Biochemistry. 2018 ; 438( Ja 2018): 199-217.Available from: http://dx.doi.org/10.1007/s11010-017-3129-3

    Referências citadas na obra
    Demetri GD, Antonia S, Benjamin RS et al (2010) Soft tissue sarcoma. J Natl Compr Canc Netw 8:630–674
    Cancer. Net Editorial Board (2013) Oncologist-approved cancer information from the American Society of Clinical Oncology. http://www.cancer.net/cancer-types/sarcoma/statistics . Accessed 30 Nov 2015
    Zhang CX, Lippard SJ (2003) New metal complexes as potential therapeutics. Curr Opin Chem 7:481–489
    Chaudhary A, Singh AK, Singh RV (2006) Investigations of the possible pharmacological effects of organotin(II) complexes. J Inorg Biochem 100:1632–1645
    Alama A, Tasso B, Novelli F, Sparatore F (2009) Organometallic compound in oncology: implications of novel organotins as antitumor agents. Drug Discov 14:500–508
    Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Met Rev 45:62–69
    Aird RE, Cummings J, Ritchie AA et al (2002) In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer. Br J Cancer 86:1652–1657
    Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Comm 38:4764–4776
    Chelopo MP, Pawar SA, Sokhela MK et al (2013) Anticancer activity Of ruthenium(II) arene complexes bearing 1,2,3,4-tetrahydroisoquinoline amino alcohol ligands. Eur J Med Chem 66:407–414
    Queiroz SL, Batista AA, Oliva G et al (1998) The reactivity of five-coordinate Ru (II)(1, 4-bis (diphenylphosphino) butane) complexes with the N-donor ligands: ammonia, pyridine, 4-substituted pyridines, 2, 2′-bipyridine, bis (o-pyridyl) amine, 1, 10-phenanthroline, 4, 7-diphenylphenanthroline and ethylenediamine. Inorg Chim Acta 267:209–221
    Camargo MS, da Silva MM, Correa RS et al (2016) Inhibition of human DNA topoisomerase IB by nonmutagenic ruthenium(II)-based compounds with antitumoral activity. Metallomics 8:179–192
    Blessing RH (1995) An empirical connection for absorption anisotropy. Acta Cryst A51:33–38
    Enraf-Nonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands
    Otwinowski Z, Minor W (1997) Macromolecular crystallography, part A. Methods in enzymology. Academic Press, New York, pp 307–326
    Sheldrick M (1997) SHELXS-97. Program for crystal structure resolution. University of Göttingen, Göttingen
    Sheldrick M (1997) SHELXL-97. Program for crystal structures analysis. University of Göttingen, Göttingen
    Farrugia LJ (1997) ORTEP-3 for Windows—A version of ORTEP-III with a graphical user interface (GUI). J Appl Cryst 30:565–566
    Lima AP, Pereira FC, Vilanova-Costa A et al (2010) The ruthenium complex cis-(dichloro)tetrammineruthenium(III) chloride induces apoptosis and damages DNA in murine sarcoma 180 cells. J Biosci 35:371–378
    Silveira-Lacerda EP, Vilanova-Costa A, Hamaguchi A et al (2010) The ruthenium complex cis-(Dichloro)tetraammineruthenium(III) chloride presents selective cytotoxicity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) tumor cell lines. Biol Trace Elem Res 135:98–111
    Mosman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 16:55–63
    Singh NP, McCoy MT, Tice RR, Schneider EL (1998) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191
    Kobayashi H, Sugiyama C, Morikawa Y et al (1995) A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis assay. MMS Commun 3:103–115
    Pereira FC, Lima BA, De Lima AP et al (2015) Cis-[RuCl(BzCN)(N–N)(P–P)]PF6 complexes: synthesis and in vitro antitumor activity: (BzCN = benzonitrile; N-N = 2,2′-bipyridine; 1,10-phenanthroline; P–P = 1,4-bis(diphenylphosphino) butane, 1,2-bis(diphenylphosphino)ethane, or 1,1′-(diphenylphosphino)ferrocene). J Inorg Biochem 149:91–101
    Correa RS, de Oliveira KM, Delolo FG et al (2015) Ru(II)-based complexes with N-(acyl)-N′, N′-(disubstituted)thiourea ligands: synthesis, characterization, BSA- and DNA-binding studies of new cytotoxic agents against lung and prostate tumour cells. J Inorg Biochem 150:63–71
    Mahavorasirikul W, Viyanant V, Chaijaroenkul W et al (2010) Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement Altern Med 28:10–55
    Pompilho WM, Borges FB, Miguel EC (2013) Biotechnology and biodiversity: the Brazilian forests as source of new drugs with antitumor properties. Acta Scientiae Tecncae 1:22–35
    Chen Y, Qin MY, Wu LW et al (2013) Synthesis, characterization, and anticancer activity of ruthenium(II)-β-carboline complex. Eur J Med Chem 70:120–129. doi: 10.1016/j.ejmech.2013.09.051
    Almeida VL, Leitão A, ReinaI L et al (2005) Cancer and cell cycle-specific and cell cycle nonspecific anticancer DNA-interactive agents: an introduction. Quím. Nova 28:118–129
    Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19:107–120
    Kasper C, Alborzinia H, Can S et al (2012) Synthesis and cellular impact of diene–ruthenium(II) complexes: a new class of organoruthenium anticancer agents. J Inorg Biochem 106:126–133
    Yang X, Chen L, Liu Y et al (2012) Ruthenium methylimidazole complexes induced apoptosis in lung cancer A549 cells through intrinsic mitochondrial pathway. Biochimie 94:345–353
    Lugli E, Troiano L, Ferraresi R et al (2005) Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytometry A 68:28–35
    Marverti G, Ligabue A, Montanari M et al (2011) Characterization of the cell growth inhibitory effects of a novel DNA-intercalating bipyridyl-thiourea-Pt(II) complex in cisplatin-sensitive and -resistant human ovarian cancer cells. Invest New Drugs 29:73–86
    Qian C, Wang JQ, Song CL et al (2013) The induction of mitochondria-mediated apoptosis in cancer cells by ruthenium(II) asymmetric complexes. Metallomics 5:844–854
    Liebermann DA, Hoffman B, Steinman RA (1995) Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11:199–210
    Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604
    Li L, Wong YS, Chen T (2012) Ruthenium complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers. Dalton Trans 41:1138–1141
    Xie YY, Li ZZ, Lin GJ et al (2013) DNA interaction, cytotoxicity, apoptotic activity, cell cycle arrest, reactive oxygen species and mitochondrial membrane potential assay induced by ruthenium(II) polypyridyl complexes. Inorg Chim Acta 405:228–234
    Sampath K, Sathiyaraj S, Raja G, Jayabalakrishnan C (2013) Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxicity activity. J Mol Struct 105:582–592
    Wang JQ, Zhang PY, Qian C (2014) Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells. J Biol Inorg Chem 19:335–348
    Hsu CC, Tseng LM, Lee HC (2016) Role of mitochondrial dysfunction in cancer progression. Exp Biol Med 241(12):1281–1295
    Galluzzi L, Bravo-San PJM, Vitale I et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD. Cell Death Differ 22:58–73
    Kroemer G (1998) The mitochondrion as an integrator/coordinator of cell death pathways. Cell Death Differ 5:547–548
    Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G (2002) Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265:39–47
    Xiaofei E, Kowalik TF (2014) The DNA damage response induced by infection with human cytomegalovirus and other viroses. Viruses 6:2155–2185
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040
    Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29