Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO2 (2017)

  • Authors:
  • USP affiliated authors: OLIVEIRA, AMAURI PEREIRA DE - IAG ; CAMARGO, RICARDO DE - IAG
  • USP Schools: IAG; IAG
  • DOI: 10.1007/s10546-017-0271-0
  • Subjects: MICROMETEOROLOGIA; TEMPERATURA; INTERAÇÃO BIOSFERA-ATMOSFERA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10546-017-0271-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10546-017-0271-0 (Fonte: Unpaywall API)

    Título do periódico: Boundary-Layer Meteorology

    ISSN: 0006-8314,1573-1472



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Boundary-Layer Meteorology

    ISSN: 0006-8314

    Citescore - 2017: 2.47

    SJR - 2017: 1.262

    SNIP - 2017: 1.193


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      HACKEROTT, João A; PASKYABI, Mostafa Bakhoday; REUDER, Joachim; et al. A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO2. Boundary-Layer Meteorology, Dordrecht, v. 165, n. 2, p. 211-231, 2017. Disponível em: < http://dx.doi.org/10.1007/s10546-017-0271-0 > DOI: 10.1007/s10546-017-0271-0.
    • APA

      Hackerott, J. A., Paskyabi, M. B., Reuder, J., Oliveira, A. P. de, Kral, S. T., Marques Filho, E. P., et al. (2017). A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO2. Boundary-Layer Meteorology, 165( 2), 211-231. doi:10.1007/s10546-017-0271-0
    • NLM

      Hackerott JA, Paskyabi MB, Reuder J, Oliveira AP de, Kral ST, Marques Filho EP, Mesquita M dos S, Camargo R de. A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO2 [Internet]. Boundary-Layer Meteorology. 2017 ; 165( 2): 211-231.Available from: http://dx.doi.org/10.1007/s10546-017-0271-0
    • Vancouver

      Hackerott JA, Paskyabi MB, Reuder J, Oliveira AP de, Kral ST, Marques Filho EP, Mesquita M dos S, Camargo R de. A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO2 [Internet]. Boundary-Layer Meteorology. 2017 ; 165( 2): 211-231.Available from: http://dx.doi.org/10.1007/s10546-017-0271-0

    Referências citadas na obra
    Bloomfield P (2000) Fourier analysis of time series, 2nd edn. Wiley, Raleigh, 254 pp
    Bluteau CE, Jones NL, Ivey GN (2011) Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnol Oceanogr Methods 9:302–321
    Corrsin S (1951) On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22(4):469–473
    de Arellano JVG, Duynkerke PG (1995) Atmospheric surface layer similarity theory applied to chemically reactive species. J Geophys Res 100:1397–1408
    Detto M, Katul GG (2007) Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorol 122:205–216
    Dias NL, Brutsaert W (1996) Similarity of scalars under stable conditions. Boundary-Layer Meteorol 80(4):355–373
    Dupuis H, Taylor PK, Weill A, Katsaros K (1997) Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere. J Geophys Res 102(C9):21115
    Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7(3):363–372
    Edson JB, Fairall CW (1998) Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets*. J Atmos Sci 55(13):2311–2328
    Edson JB, Fairall CW, Mestayer PG, Larsen SE (1991) A study of the inertial-dissipation method for computing air-sea fluxes. J Geophys Res 96(C6):10689
    Fairall CW, Larsen SE (1986) Inertial-dissipation methods and turbulent fluxes at the air-ocean interface. Boundary-Layer Meteorol 34(3):287–301. doi: 10.1007/BF00122383
    Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119(3):431–447
    Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W (2005) Post-field data quality control. Springer, Dordrecht
    Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6(2):3381–3402
    Hartogensis OK, Bruin HARD (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2):253–276. doi: 10.1007/s10546-004-2817-1
    Hill RJ (1989) Implications of Monin–Obukhov similarity theory for scalar quantities. J Atmos Sci 46(14):2236–2244
    Hill RJ (1997) Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J Atmos Ocean Technol 14(3):456–467
    Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78(3–4):215–246
    Iwata T, Yoshikawa K, Higuchi Y, Yamashita T, Kato S, Ohtaki E (2005) The spectral density technique for the determination of CO $$_2$$ 2 flux over the ocean. Boundary-Layer Meteorol 117(3):511–523
    Jensen DD, Nadeau DF, Hoch SW, Pardyjak ER (2016) Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces. Boundary-Layer Meteorol 159(3):567–587
    Kader BA (1992) Determination of turbulent momentum and heat fluxes by spectral methods. Boundary-Layer Meteorol 61(4):323–347
    Kaimal JC, Gaynor JE (1983) The boulder atmospheric observatory. J Clim Appl Meteorol 22(5):863–880
    Kaimal JCJ, Wyngaard JCJ, Izumi Y, Coté OR, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589
    Katul GG, Hsieh CI (1999) A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Boundary-Layer Meteorol 90(2):327–338
    Katul GG, Sempreviva AM, Cava D (2008) The temperature-humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126(2):263–278
    Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32(1):16–18
    Kooijmans LMJ, Hartogensis OK (2016) Surface-layer similarity functions for dissipation rate and structure parameters of temperature and humidity based on eleven field experiments. Boundary-Layer Meteorol 160(3):501–527
    Lee X, Finnigan J, Paw UKT (2005) Coordinate systems and flux bias error. Springer, Dordrecht, pp 33–66
    Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262
    Li M, Babel W, Tanaka K, Foken T (2013) Note on the application of planar-fit rotation for non-omnidirectional sonic anemometers. Atmos Meas Tech 6(2):221–229
    Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, de Vilà-Guerau Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jimenez Cortes Ma, Jonassen M, van den Kroonenberg A, Lenschow DH, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene aF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14(7):10,789–10,852
    Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3):375–396
    Nilsson E, Lothon M, Lohou F, Pardyjak E, Hartogensis O, Darbieu C (2016) Turbulence kinetic energy budget during the afternoon transition: part 2: a simple TKE model. Atmos Chem Phys 15(21):29,807–29,869
    Norman M, Rutgersson A, Sørensen LL, Sahlée E (2012) Methods for estimating airsea fluxes of CO $$_2$$ 2 using high-frequency measurements. Boundary-Layer Meteorol 144(3):379–400
    Ohtaki E (1985) On the similarity in atmospheric fluctuations of carbon dioxide, water vapor and temperature over vegetated fields. Boundary-Layer Meteorol 32(1):25–37
    Pahlow M, Parlange MB, Port-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99(2):225–248
    Rannik Ü (1998) On the surface layer similarity at a complex forest site. J Geophys Res 103(D8):8685–8697
    Rannik U, Peltola O, Mammarella I (2016) Random uncertainties of flux measurements by the eddy covariance technique. Atmos Meas Tech 9(10):5163–5181
    Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120(1):39–63
    Sahlée E, Smedman AS, Rutgersson A, Högström U (2008) Spectra of CO $$_2$$ 2 and water vapour in the marine atmospheric surface layer. Boundary-Layer Meteorol 126(2):279–295
    Sempreviva AM, Højstrup J (1998) Transport of temperature and humidity variance and covariance in the marine surface layer. Boundary-Layer Meteorol 87(2):233–253
    Sjöblom A, Smedman AS (2004) Comparison between eddy-correlation and inertial dissipation methods in the marine atmospheric surface layer. Boundary-Layer Meteorol 110(2):141–164
    Sørensen LL, Larsen SE (2010) Atmosphere surface fluxes of CO $$_2$$ 2 using spectral techniques. Boundary-Layer Meteorol 136(1):59–81
    Sørensen LL, Jensen B, Glud RN, McGinnis DF, Sejr MK, Sievers J, Søgaard DH, Tison JL, Rysgaard S (2014) Parameterization of atmosphere surface exchange of CO $$_2$$ 2 over sea ice. Cryosphere 8(3):853–866
    Stull RB (1988) An introduction to boundary layer meteorology. Springer, Dordrecht, 666 pp
    van de Boer A, Moene AF, Graf A, Schüttemeyer D, Simmer C (2014) Detection of entrainment influences on surface-layer measurements and extension of Monin–Obukhov similarity theory. Boundary-Layer Meteorol 152(1):19–44
    Wang L, Li D, Gao Z, Sun T, Guo X, Bou-Zeid E (2014) Turbulent transport of momentum and scalars above an urban canopy. Boundary-Layer Meteorol 150(3):485–511
    Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100
    Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122(1):149–165
    Willis GE, Deardorff JW (1976) On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Q J R Meteorol Soc 102(434):817–822
    Yelland M, Taylor PK (1996) Wind stress measurements from the open ocean. J Phys Oceanogr 26(4):541–558