Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Interaction between saliva's adenosine and tick parasitism: effects on feeding and reproduction (2017)

  • Authors:
  • USP affiliated authors: FERREIRA, BEATRIZ ROSSETTI - EERP ; MILANEZI, CRISTIANE MARIA - FMRP ; SILVA, JOÃO SANTANA DA - FMRP ; SANTOS, ISABEL KINNEY FERREIRA DE MIRANDA - FMRP
  • USP Schools: EERP; FMRP; FMRP; FMRP
  • DOI: 10.1186/s13071-017-2248-8
  • Subjects: ANTÍGENOS; CARRAPATOS; SALIVA; VACINAS; IXÓDIDAE; EXPRESSÃO GÊNICA
  • Keywords: Ticks; Rhipicephalus sanguineus; Saliva; Adenosine; Dendritic cells; T cells
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s13071-017-2248-8 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1186/s13071-017-2248-8 (Fonte: Unpaywall API)

    Título do periódico: Parasites & Vectors

    ISSN: 1756-3305

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Parasites and Vectors

    ISSN: 1756-3305

    Citescore - 2017: 3.29

    SJR - 2017: 1.702

    SNIP - 2017: 1.295


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EERP2871086pcd 2871086 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ANATRIELLO, Elen; OLIVEIRA, Carlo José Freire; OLIVEIRA, Nathália Baptista; et al. Interaction between saliva's adenosine and tick parasitism: effects on feeding and reproduction. Parasites and Vectors, London, v. 10, n. 1, 2017. Disponível em: < http://dx.doi.org/10.1186/s13071-017-2248-8 > DOI: 10.1186/s13071-017-2248-8.
    • APA

      Anatriello, E., Oliveira, C. J. F., Oliveira, N. B., Fisch, A., Milanezi, C. M., Silva, J. S. da, et al. (2017). Interaction between saliva's adenosine and tick parasitism: effects on feeding and reproduction. Parasites and Vectors, 10( 1). doi:10.1186/s13071-017-2248-8
    • NLM

      Anatriello E, Oliveira CJF, Oliveira NB, Fisch A, Milanezi CM, Silva JS da, Santos IKF de M, Ferreira BR. Interaction between saliva's adenosine and tick parasitism: effects on feeding and reproduction [Internet]. Parasites and Vectors. 2017 ; 10( 1):Available from: http://dx.doi.org/10.1186/s13071-017-2248-8
    • Vancouver

      Anatriello E, Oliveira CJF, Oliveira NB, Fisch A, Milanezi CM, Silva JS da, Santos IKF de M, Ferreira BR. Interaction between saliva's adenosine and tick parasitism: effects on feeding and reproduction [Internet]. Parasites and Vectors. 2017 ; 10( 1):Available from: http://dx.doi.org/10.1186/s13071-017-2248-8

    Referências citadas na obra
    Pegram RG, Walker JB, Clifford CM, Keirans JE. Classification of the Rhipicephalus sanguineus group (Acari: Ixodoidea, Ixodidae). Syst Parasitol. 1987;10:3–26.
    Dantas-Torres F. Canine vector-borne diseases in Brazil. Parasit Vectors. 2008;1:25.
    Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:3–14.
    Almazán C, González-Álvarz V, Fernández de Mera I, Cabezas-Cruz A, Rodríguez-Martínez R, de la Fuente J. Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico. Ticks Tick Borne Dis. 2016;7:276–83.
    Cupp EW. Biology of ticks. Vet Clin North Am Small Anim Pract. 1991;21:1–26.
    Dantas-Torres F, Figueredo L, Brandão-Filho S. Rhipicephalus sanguineus (Acari: Ixodidae), the brown dog tick, parasitizing humans in Brazil. Rev Soc Bras Med Trop. 2006;39:64–7.
    Dantas-Torres F. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit Vectors. 2010;3:26.
    Demma LJ, Holman RC, McQuiston JH, Krebs JW, Swerdlow DL. Epidemiology of human ehrlichiosis and anaplasmosis in the United States, 2001-2002. Am J Trop Med Hyg. 2005;73:400–9.
    Ribeiro JM. Role of saliva in tick/host interactions. Exp Appl Acarol. 1989;7:15–20.
    Ribeiro JM, Francischetti IM. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol. 2003;48:73–88.
    Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci. 2009;14:2051–88.
    Kovar L. Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol (Praha). 2004;49:327–36.
    Wikel SK. Host immunity to ticks. Annu Rev Entomol. 1996;41:1–22.
    Mans BJ. Tick histamine-binding proteins and related lipocalins: potential as therapeutic agents. Curr Opin Investig Drugs. 2005;6:1131–5.
    Ribeiro JM. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 1995;4:143–52.
    Anatriello E, Ribeiro JM, de Miranda-Santos IK, Brandao LG, Anderson JM, Valenzuela JG, et al. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics. 2010;11:450.
    Steen NA, Barker S, Alewood P. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon. 2006;47:1–20.
    Ribeiro JM, Makoul GT, Levine J, Robinson DR, Spielman A. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J Exp Med. 1985;161:332–44.
    Francischetti IM. Platelet aggregation inhibitors from hematophagous animals. Toxicon. 2010;56:1130–44.
    Urioste S, Hall L, Telford S, Titus R. Saliva of the Lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism. J Exp Med. 1994;180:1077–85.
    Ferreira BR, Silva JS. Saliva of R. sanguineus tick impairs T cell proliferation and IFN-g-induced macrophage microbicidal activity. Vet Immunol Immunopathol. 1998;64:279–93.
    Wikel SK. Tick modulation of host cytokines. Exp Parasitol. 1996;84:304–9.
    Ramachandra RN, Wikel SK. Modulation of host immune responses by ticks (Acari: Ixodidae): effect of salivary gland extracts on host macrophages and lymphocyte cytokine production. J Med Entomol. 1992;29:818–26.
    Kopecky J, Kuthejlová M. Suppressive effect of Ixodes ricinus salivary gland extract on mechanisms of natural immunity in vitro. Parasite Immunol. 1998;20:169–74.
    Preston SG, Majtán J, Kouremenou C, Rysnik O, Burger LF, Cabezas Cruz A, et al. Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog. 2013;9:e1003450.
    Cavassani K, Aliberti J, Dias A, Silva J, Ferreira BR. Tick saliva inhibits differentiation, maturation and function of murine bone-marrow-derived dendritic cells. Immunology. 2005;114:235–45.
    Oliveira C, Cavassani K, Moré D, Garlet G, Aliberti J, Silva JS, et al. Tick saliva inhibits the chemotactic function of MIP-1alpha and selectively impairs chemotaxis of immature dendritic cells by down-regulating cell-surface CCR5. Int J Parasitol. 2008;38:705–16.
    Oliveira CJ, Carvalho WA, Garcia GR, Gutierrez FR, de Miranda Santos IK, Silva JS, et al. Tick saliva induces regulatory dendritic cells: MAP-kinases and toll-like receptor-2 expression as potential targets. Vet Parasitol. 2010;167:288–97.
    Oliveira C, Sá-Nunes A, Francischetti I, Carregaro V, Anatriello E, Silva JS, et al. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem. 2011;286:10960–9.
    Ribeiro JM, Weiss JJ, Telford SR. Saliva of the tick Ixodes dammini inhibits neutrophil function. Exp Parasitol. 1990;70:382–8.
    Ribeiro JM, Spielman A. Ixodes dammini: salivary anaphylatoxin inactivating activity. Exp Parasitol. 1986;62:292–7.
    Rescigno M. Dendritic cells and the complexity of microbial infection. Trends Microbiol. 2002;10:425–61.
    Blackburn MR, Vance C, Morschl E, Wilson C. Adenosine receptors and inflammation. Handb Exp Pharmacol. 2009;193:215–69.
    Borea P, Varani K, Vincenzi F, Baraldi P, Tabrizi M, et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev. 2015;67:74–102.
    Novitskiy S, Ryzhov S, Zaynagetdinov R, Goldstein A, Huang Y, Tikhomirov OY, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–31.
    Cheong S, Federico S, Venkatesan G, Mandel A, Shao Y, Moro S, et al. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev. 2013;33:235-5.
    Ryzhov S, Zaynagetdinov R, Goldstein A, Novitskiy S, Blackburn M, Biaggioni I, et al. Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther. 2008;324:694–700.
    Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414:916–20.
    Lukashev D, Ohta A, Apasov S, Chen J, Sitkovsky M. Cutting edge, physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol. 2004;173:21–4.
    Ribeiro J, Modi G. The salivary adenosine/AMP content of Phlebotomus argentipes Annandale and Brunetti, the main vector of human kala-azar. J Parasitol. 2001;87:915–7.
    Kato H, Jochim R, Lawyer P, Valenzuela J. Identification and characterization of a salivary adenosine deaminase from the sand fly Phlebotomus duboscqi, the vector of Leishmania major in sub-Saharan Africa. J Exp Biol. 2007;210:733–40.
    Carregaro V, Ribeiro J, Valenzuela J, Souza-Júnior D, Costa D, Oliveira CJ, et al. Nucleosides present on phlebotomine saliva induce immunossuppression and promote the infection establishment. PLoS Negl Trop Dis. 2015;9:e0003600.
    Bechara GH, Szabó MP, Machado RZ, Rocha UF. Technique for collecting saliva from the cattle-tick Boophilus microplus (Canestrini, 1887) using a chemical stimulation. Enviromental and temporal influences on secretion yield. Braz J Med Biol Res. 1988;21:479–84.
    Chen J, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, et al. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci. 1999;19:9192–200.
    Blackburn MR, Vance CO, Morschl E, Wilson CN. Adenosine receptors and inflammation. Handb Exp Pharmacol. 2009;193:215–69.
    Hume ME, Essenberg R, McNew RW, Bantle JA, Sauer JR. Adenosine-3′,5′-monophosphate in salivary glands of unfed and feeding female lone star ticks, Amblyomma americanum (L.). Comp Biochem Physiol C. 1984;79:47–50.
    Poole NM, Mamidanna G, Smith RA, Coons LB, Cole JA. Prostaglandin E(2) in tick saliva regulates macrophage cell migration and cytokine profile. Parasit Vectors. 2013;6:261.
    Murphree LJ, Sullivan GW, Marshall MA, Linden J. Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NF-kappaB in a(2A) adenosine receptor induction. Biochem J. 2005;1:575–80.
    Federico S, Spalluto G. Therapeutic potential of A2 and A3 adenosine receptor: a review of novel patented ligands. Expert Opin Ther Pat. 2012;22:369–90.
    Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and in glucose homeostasis and lipid metabolism. J Cell Physiol. 2013;
    Yang D, Koupenova M, McCrann D, Kopeikina K, Kagan H, Schreiber BM, et al. The A2b adenosine receptor protects against vascular injury. Proc Ntnl Acad Sci USA. 2008;105:792–6.
    Kong T, Westerman K, Faigle M, Eltzschig H, Colgan S. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 2006;20:2242–50.
    Lee JL, Mukthar H, Bickers DR, Kopelovich L, Aathar M. Cyclooxygenases in the skin: pharmacological and toxicological implications. Toxicol Appl Pharmacol. 2003;192:294–306.
    Kotál J, Langhansová H, Lieskovská J, Andersen J, Francischetti I, Chavakis T, et al. Modulation of host immunity by tick saliva. J Proteome. 2015;128:58–68.
    Kotsyfakis M, Schwarz A, Erhart J, Ribeiro J. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci Rep. 2015;5:9103.
    Linden J, Cekic C. Regulation of lymphocyte function by adenosine. Arterioscler Thromb Vasc Biol. 2012;9:2097–103.
    Johnston A, Gudjonsson J, Sigmundsdottir H, Ludviksson B, Valdimarsson H. The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol. 2005;114:154–63.
    Collis M. The vasodilator role of adenosine. Pharmacol Ther. 1989;41:143–62.
    Haslam RJ, Davidson MM, Davies T, Lynham JA, McClenaghan MD. Regulation of blood platelet function by cyclic nucleotides. Adv Cyclic Nucleotide Res. 1978;9:533–52.
    Wilson J, Ross W, Agbai O, Frazier R, Figler R, Rieger J, et al. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells. Handb Exp Pharmacol Rev. 2009;193:329–62.
    Ukena D, Schudt C, Sybrecht GW. Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isozymes. Biochem Pharmacol. 1993;45:847–51.1.
    Hertz AL, Beavo JA. Cyclic nucleotides and phosphodiesterases in monocytic differentiation. Handb Exp Pharmacol. 2011;204:365–90.
    Heystek H, Thierry A, Soulard P, Moulon C. Phosphodiesterase 4 inhibitors reduce human dendritic cell inflammatory cytokine production and Th1-polarizing capacity. Int Immunol. 2003;15:827–35.
    Ukena D, Schudt C, Sybrecht GW. Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isozymes. Biochem Pharmacol. 1993;45:847–51.
    Boswell-Smith V, Cazzola M, Page CP. Are phosphodiesterase 4 inhibitors just more theophylline? J Allery Clin Immunol. 2006;117:1237–43.
    Ferreira BR, Silva JS. Successive tick infestations selectively promote a T-helper 2 cytokine profile in mice. Immunology. 1999;96:434–9.
    Hasko G, Kuhel D, Chen J, Schwarzschild M, Deitch E, Mabley JG, et al. Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J. 2000;14:2065–74.
    Csoka B, Nemeth Z, Virag L, Gergely P, Leibovich S, Pacher P, et al. A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood. 2007;110:2685–95.
    Panther E, Corinti S, Idzko M, Herouy Y, Napp M, la Sala A, et al. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood. 2003;101:3985–90.
    Chen M, Liang D, Zuo A, Shao H, Kaplan H, Sun D. An A2b adenosine receptor agonist promotes Th17 autoimmune responses in experimental autoimmune uveitis (EAU) via dendritic cell activation. PLoS One. 2015;10:e0132348.
    Figler R, Wang G, Srinivasan S, Jung D, Zhang Z, Pankow JS, et al. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes. 2011;2:669–79.
    Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997;90:1600–10.
    Butler J, Mader J, Watson C, Zhang H, Blay J, Hoskin DW. Adenosine inhibits activation-induced T cell expression of CD2 and CD28 co- stimulatory moleculces: role of interleukin-2 and cyclic AMP signaling pathways. J Cell Biochem. 2003;89:975–91.
    Whiteside T, Mandapathil M, Schuler P. The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem Rev. 2011;18:5217–23.
    Dubey R, Gillespie D, Shue H, Jackson E. A(2B) receptors mediate antimitogenesis in vascular smooth muscle cells. Hypertension. 2000;35:267–72.
    Dubey R, Gillespie D, Mi Z, Jackson E. Adenosine inhibits PDGF-induced growth of human glomerular mesangial cells via a(2B) receptors. Hypertension. 2005;46:628–34.
    Ramkumar V, Stiles GL, Beaven MA, Ali H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem. 1993;268:16887–90.
    Salvatore C, Tilley S, Latour A, Fletcher D, Koller B, Jacobson MA. Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem. 2000;275:4429–34.
    Van Der Hoeven D, Wan TC, Auchampach JA. Activation of the A3 adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol Pharmacol. 2008;74:685–96.
    Martin L, Pingle S, Hallam D, Rybak L, Ramkumar V. Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-B and extracellular signal regulated kinase 1/2. J Pharmacol Exp Ther. 2006;318:71–8.
    Fishman P, Bar-Yehuda S, Synowitz M, Powell JD, Klotz K, Gessi S, et al. Adenosine receptors and cancer. Handb Exp Pharmacol. 2009;193:399–441.
    Ford A, Castonguay A, Cottet M, Little J, Chen Z, Symons-Liguori AM, et al. Engagement of the GABA to KCC2 signaling pathway contributes to the analgesic effects of A3AR agonists in neuropathic pain. J Neurosci. 2015;35:6057–67.