Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Human migration and the spread of malaria parasites to the New World (2018)

  • Authors:
  • USP affiliated authors: ALVES, JOÃO MARCELO PEREIRA - ICB ; DIAS, JOSÉ LUIZ CATÃO - FMVZ ; MALAFRONTE, ROSELY DOS SANTOS - IMT ; FERREIRA, MARCELO URBANO - ICB
  • USP Schools: ICB; FMVZ; IMT; ICB
  • DOI: 10.1038/s41598-018-19554-0
  • Subjects: MALÁRIA; MIGRAÇÃO; PARASITOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-19554-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-018-19554-0 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMVZ2871142-10CAT - 343
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RODRIGUES, Priscila Thihara; BRITO, Cristiana Ferreira Alves de; SOUZA JUNIOR, Júlio César de; et al. Human migration and the spread of malaria parasites to the New World. Scientific Reports, London, Nature Publishing Group, v. 8, p. 1-13, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-19554-0 > DOI: 10.1038/s41598-018-19554-0.
    • APA

      Rodrigues, P. T., Brito, C. F. A. de, Souza Junior, J. C. de, Hirano, Z. M. B., Bueno, M. G., Valdivia, H. O., et al. (2018). Human migration and the spread of malaria parasites to the New World. Scientific Reports, 8, 1-13. doi:10.1038/s41598-018-19554-0
    • NLM

      Rodrigues PT, Brito CFA de, Souza Junior JC de, Hirano ZMB, Bueno MG, Valdivia HO, Oliveira TC de, Alves JMP, Duarte AMR de C, Cerutti Junior C, Buery JC, Catão-Dias JL, Malafronte R dos S, Ladeia-Andrade S, Mita T, Santamaria AM, Calzada JE, Tantular IS, Kawamoto F, Raijmakers LRJ, Mueller I, Pacheco MA, Escalante AA, Felger I, Ferreira MU. Human migration and the spread of malaria parasites to the New World [Internet]. Scientific Reports. 2018 ; 8 1-13.Available from: http://dx.doi.org/10.1038/s41598-018-19554-0
    • Vancouver

      Rodrigues PT, Brito CFA de, Souza Junior JC de, Hirano ZMB, Bueno MG, Valdivia HO, Oliveira TC de, Alves JMP, Duarte AMR de C, Cerutti Junior C, Buery JC, Catão-Dias JL, Malafronte R dos S, Ladeia-Andrade S, Mita T, Santamaria AM, Calzada JE, Tantular IS, Kawamoto F, Raijmakers LRJ, Mueller I, Pacheco MA, Escalante AA, Felger I, Ferreira MU. Human migration and the spread of malaria parasites to the New World [Internet]. Scientific Reports. 2018 ; 8 1-13.Available from: http://dx.doi.org/10.1038/s41598-018-19554-0

    Referências citadas na obra
    Harcourt, A. H. Human phylogeography and diversity. Proc. Natl. Acad. Sci. USA 113, 8072–8078 (2016).
    Bruce-Chwatt, L. J. Paleogenesis and paleo-epidemiology of primate malaria. Bull. World Health Organ. 32, 363–387 (1965).
    Carter, R. Speculations on the origins of Plasmodium vivax malaria. Trends Parasitol. 19, 214–219 (2003).
    Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).
    McNeill, W. H. Plagues and Peoples (Anchor Press/Doubleday, 1976).
    Joralemon, D. New world depopulation and the case of disease. J. Anthropol. Res. 38, 108–127 (1982).
    de Castro, M. C. & Singer, B. H. Was malaria present in the Amazon before the European conquest?Available evidence and future research agenda. J. Archaeol. Sci. 32, 337–340 (2005).
    Yalcindag, E. et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc. Natl. Acad. Sci. USA 109, 511–516 (2012).
    Bruce-Chwatt, L. J. & de Zulueta, J. The Rise and Fall of Malaria in Europe: A Historico-epidemiological Study (Oxford Univ. Press, 1980).
    Cambournac, F. J. Contribution to the history of malaria epidemiology and control in Portugal and some other places. Parassitologia 36, 215–222 (1994).
    Zimmerman, P. A., Ferreira, M. U., Howes, R. E. & Mercereau-Puijalon, O. Red blood cell polymorphism and susceptibility to Plasmodium vivax. Adv. Parasitol. 81, 27–76 (2013).
    Li, J. et al. Geographic subdivision of the range of the malaria parasite Plasmodium vivax. Emerg. Infect. Dis. 7, 35–42 (2001).
    Cormier, L. A. The historical ecology of human and wild primate malarias in the New World. Diversity 2, 256–280 (2010).
    Taylor, J. E. et al. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas. Mol. Biol. Evol. 30, 2050–2064 (2013).
    Winter, D. J. et al. Whole genome sequencing of field isolates reveals extensive genetic diversity in Plasmodium vivax from Colombia. PLoS Negl. Trop. Dis. 9, e0004252 (2015).
    Hupalo, D. N. et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat. Genet. 48, 953–958 (2016).
    de Oliveira, T. C. et al. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl. Trop. Dis. 11, e0005824 (2017).
    Gerszten, E., Allison, M. J. & Maguire, B. Paleopathology in South American mummies: a review and new findings. Pathobiology 79, 247–256 (2012).
    Bianucci, R., Araújo, A., Pusch, C. M. & Nerlich, A. G. The identification of malaria in paleopathology-An in-depth assessment of the strategies to detect malaria in ancient remains. Acta Trop. 152, 176–180 (2015).
    Boyd, M. F. An historical sketch of the prevalence of malaria in North America. Am. J. Trop. Med. Hyg. 21, 223–244 (1941).
    Wood, C. S. et al. New evidence for a late introduction of malaria into the New World. Curr. Anthropol. 16, 93–104 (1975).
    Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of Malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).
    Joy, D. A. et al. Early origin and recent expansion of Plasmodium falciparum. Science 300, 318–321 (2003).
    Tanabe, K. et al. Plasmodium falciparum accompanied the human expansion out of Africa. Curr. Biol. 20, 1283–1289 (2010).
    Gelabert, P. et al. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc. Natl. Acad. Sci. USA 113, 11495–11500 (2016).
    Culleton, R. & Carter, R. African Plasmodium vivax: distribution and origins. Int. J. Parasitol. 42, 1091–1097 (2012).
    Prugnolle, F. et al. Diversity, host switching and evolution of Plasmodium vivax infecting African great apes. Proc. Natl. Acad. Sci. USA 110, 8123–8128 (2013).
    Brasil, P. et al. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Glob. Health 5, e1038–e1046 (2017).
    Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345 (2006).
    Avise, J. C. et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489–522 (1987).
    Cornejo, O. E. & Escalante, A. A. The origin and age of Plasmodium vivax. Trends Parasitol. 22, 558–563 (2006).
    Strasburg, J. L. & Rieseberg, L. H. How robust are “isolation with migration” analyses to violations of the im model? A simulation study. Mol. Biol. Evol. 27, 297–310 (2010).
    Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).
    Emory University. Voyages. The Trans-Atlantic Slave Trade Database (Emory University, 2016).
    Rodrigues, J. H. Brasil e África: Outro Horizonte (Civilização Brasileira, 1982).
    Skoglund, P. et al. Genetic evidence for two founding populations of the Americas. Nature 525, 104–108 (2015).
    Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).
    Gonçalves, V. F. et al. Identification of Polynesian mtDNA haplogroups in remains of Botocudo Amerindians from Brazil. Proc. Natl. Acad. Sci. USA 110, 6465–6469 (2013).
    Meggers, B. J. Environmental limitation on the development of culture. Am. Anthropol. 56, 801–824 (1954).
    Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).
    Heckenberger, M. J. Lost cities of the Amazon. Sci. Am. 301, 64–71 (2009).
    Carson, J. F. et al. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proc. Natl. Acad. Sci. USA 111, 10497–10502 (2014).
    Pärssinen, M., Schaan, D. & Ranzi, A. Pre-Columbian geometric earthworks in the upper Purús: a complex society in western Amazonia. Antiquity 83, 1084–1095 (2009).
    Watling, J. et al. Impact of pre-Columbian “geoglyph” builders on Amazonian forests. Proc. Natl. Acad. Sci. USA 114, 1868–1873 (2017).
    Muehlenbein, M. P. et al. Accelerated diversification of nonhuman primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol. Biol. Evol. 32, 422–439 (2015).
    Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).
    Tazi, L. & Ayala, F. J. Unresolved direction of host transfer of Plasmodium vivax v. P. simium and P. malariae v. P. brasilianum. Infect. Genet. Evol. 11, 209–221 (2011).
    Da Fonseca, F. Plasmodium of a primate of Brazil. Mem. Inst. Oswaldo Cruz 49, 543–553 (1951).
    Deane, L. M. Simian malaria in Brazil. Mem. Inst. Oswaldo Cruz 87, 1–20 (1992).
    de Alvarenga, D. A. M. et al. Simian malaria in the Brazilian Atlantic forest: first description of natural infection of capuchin monkeys (Cebinae subfamily) by Plasmodium simium. Malar. J. 14, 81 (2015).
    Bueno, M. G. Pesquisa de Leishmania spp. e Plasmodium spp. em Primatas Neotropicais Provenientes de Regiões de Mata Atlântica e Amazônia Impactadas por Ações Antrópicas: Investigação in situ e ex situ. Doctoral dissertation (University of São Paulo, 2012).
    Leclerc, M. C. et al. Meager genetic variability of the human malaria agent Plasmodium vivax. Proc. Natl. Acad. Sci. USA 101, 14455–14460 (2004).
    Lim, C. S., Tazi, L. & Ayala, F. J. Plasmodium vivax: recent world expansion and genetic identity to Plasmodium simium. Proc. Natl. Acad. Sci. USA 102, 15523–15528 (2005).
    Rich, S. M. The unpredictable past of Plasmodium vivax revealed in its genome. Proc. Natl. Acad. Sci. USA 101, 15547–15548 (2004).
    Jongwutiwes, S. et al. Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Mol. Biol. Evol. 22, 1733–1739 (2005).
    Mu, J. et al. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol. Biol. Evol. 22, 1686–1693 (2005).
    Marrelli, M. T., Malafronte, R. S., Sallum, M. A. & Natal, D. Kerteszia subgenus of Anopheles associated with the Brazilian Atlantic rainforest:current knowledge and future challenges. Malar. J. 6, 127 (2007).
    Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3, 72 (2010).
    Joy, D. A. et al. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol. Biol. Evol. 25, 1245–1252 (2008).
    Miotto, O. et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat. Genet. 45, 648–655 (2013).
    Mobegi, V. A. et al. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol. Biol. Evol. 31, 1490–1499 (2014).
    Martin, D. P. et al. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26, 2462–2463 (2010).
    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
    Librado, P. & Rozas, J. DnaSPv5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    Watterson, G. A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256–276 (1975).
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
    Weir, B. S. & Cockerham, C. C. Estimating F statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    Huson, D. H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460 (2007).
    Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    Ricklefs, R. E. & Outlaw, D. C. A molecular clock for malaria parasites. Science 329, 226–229 (2010).
    Bensch, S. et al. How can we determine the molecular clock of malaria parasites? Trends Parasitol. 29, 363–369 (2013).
    Andreína Pacheco M. et al. Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol. in press (2017).
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
    Kuhner, M. K. Coalescent genealogy samplers: windows into population history. Trends Ecol. Evol. 24, 86–93 (2009).
    Beerli, P. & Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185, 313–326 (2010).
    Tanabe, K. et al. Plasmodium falciparum mitochondrial genetic diversity exhibits isolation-by-distance patterns supporting a sub-Saharan African origin. Mitochondrion 13, 630–636 (2013).