Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis (2018)

  • Authors:
  • USP affiliated authors: UGRINOWITSCH, CARLOS - EEFE ; SILVA, HAMILTON AUGUSTO ROSCHEL DA - EEFE
  • USP Schools: EEFE; EEFE
  • DOI: 10.1007/s40279-017-0795-y
  • Subjects: FORÇA MUSCULAR; TREINAMENTO DE FORÇA; FLUXO SANGUÍNEO REGIONAL; REVISÃO SISTEMÁTICA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
    • Publisher place: Cham
    • Date published: 2018
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s40279-017-0795-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s40279-017-0795-y (Fonte: Unpaywall API)

    Título do periódico: Sports Medicine

    ISSN: 0112-1642,1179-2035



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Sports Medicine

    ISSN: 0112-1642

    Citescore - 2017: 6.92

    SJR - 2017: 3.367

    SNIP - 2017: 3.248


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EEFE2872764-10PRO 2018 011
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LIXANDRÃO, M. E; UGRINOWITSCH, Carlos; BERTON, R; et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Medicine, Cham, v. fe 2018, n. 2, p. 361-378, 2018. Disponível em: < http://dx.doi.org/10.1007/s40279-017-0795-y > DOI: 10.1007/s40279-017-0795-y.
    • APA

      Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., et al. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Medicine, fe 2018( 2), 361-378. doi:10.1007/s40279-017-0795-y
    • NLM

      Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, Libardi CA, Roschel H. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis [Internet]. Sports Medicine. 2018 ; fe 2018( 2): 361-378.Available from: http://dx.doi.org/10.1007/s40279-017-0795-y
    • Vancouver

      Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, Libardi CA, Roschel H. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis [Internet]. Sports Medicine. 2018 ; fe 2018( 2): 361-378.Available from: http://dx.doi.org/10.1007/s40279-017-0795-y

    Referências citadas na obra
    Coffey TH. Delorme method of restoration of muscle power by heavy resistance exercises. Treat Serv Bull. 1946;1(2):8–11.
    Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60. doi: 10.1007/s00421-002-0681-6 .
    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.
    Schoenfeld BJ, Wilson JM, Lowery RP, et al. Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur J Sport Sci. 2016;16(1):1–10. doi: 10.1080/17461391.2014.989922 .
    ACSM. ACSM clinician profile. David T. Bernhardt, M.D. Curr Sports Med Rep. 2009;8(4):161. doi: 10.1249/JSR.0b013e3181adff73 .
    Lixandrao ME, Ugrinowitsch C, Laurentino G, et al. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol. 2015;115(12):2471–80. doi: 10.1007/s00421-015-3253-2 .
    Vechin FC, Libardi CA, Conceicao MS, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071–6. doi: 10.1519/JSC.0000000000000703 .
    Manimmanakorn A, Hamlin MJ, Ross JJ, et al. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport. 2013;16(4):337–42. doi: 10.1016/j.jsams.2012.08.009 .
    Mattar MA, Gualano B, Perandini LA, et al. Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis. Arthritis Res Ther. 2014;16(5):473. doi: 10.1186/s13075-014-0473-5 .
    Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: a systematic review and meta-analysis. J Sci Med Sport. 2016;19(8):669–75. doi: 10.1016/j.jsams.2015.09.005 .
    Kubo K, Komuro T, Ishiguro N, et al. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech. 2006;22(2):112–9.
    Karabulut M, Abe T, Sato Y, et al. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol. 2010;108(1):147–55. doi: 10.1007/s00421-009-1204-5 .
    Yasuda T, Ogasawara R, Sakamaki M, et al. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol. 2011;111(10):2525–33. doi: 10.1007/s00421-011-1873-8 .
    Martin-Hernandez J, Marin PJ, Menendez H, et al. Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports. 2013;23(2):e114–20. doi: 10.1111/sms.12036 .
    Clark BC, Manini TM, Hoffman RL, et al. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports. 2011;21(5):653–62. doi: 10.1111/j.1600-0838.2010.01100.x .
    Laurentino GC, Ugrinowitsch C, Roschel H, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406–12. doi: 10.1249/MSS.0b013e318233b4bc .
    Ozaki H, Yasuda T, Ogasawara R, et al. Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. Eur J Appl Physiol. 2013;113(1):167–74. doi: 10.1007/s00421-012-2422-9 .
    Thiebaud RS, Loenneke JP, Fahs CA, et al. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin Physiol Funct Imaging. 2013;33(5):344–52. doi: 10.1111/cpf.12033 .
    Ellefsen S, Hammarstrom D, Strand TA, et al. Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am J Physiol Regul Integr Comp Physiol. 2015;309(7):R767–79. doi: 10.1152/ajpregu.00497.2014 .
    Libardi CA, Chacon-Mikahil MP, Cavaglieri CR, et al. Effect of concurrent training with blood flow restriction in the elderly. Int J Sports Med. 2015;36(5):395–9. doi: 10.1055/s-0034-1390496 .
    Buckner SL, Jessee MB, Mattocks KT, et al. Determining strength: a case for multiple methods of measurement. Sports Med. 2017;47(2):193–5. doi: 10.1007/s40279-016-0580-3 .
    Loenneke JP, Kim D, Fahs CA, et al. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve. 2014;. doi: 10.1002/mus.24448 .
    Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903–12. doi: 10.1007/s00421-011-2266-8 .
    Loenneke JP, Fahs CA, Rossow LM, et al. Blood flow restriction pressure recommendations: a tale of two cuffs. Front Physiol. 2013;4:249. doi: 10.3389/fphys.2013.00249 .
    Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235–41.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi: 10.1136/bmj.327.7414.557 .
    Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2016. doi: 10.1080/02640414.2016.1210197 .
    Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000;88(6):2097–106.
    Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc. 2013;45(1):67–74. doi: 10.1249/MSS.0b013e31826c6fa8 .
    Becker R, Awiszus F. Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle. Muscle Nerve. 2001;24(5):667–72.
    Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406. doi: 10.1007/s00421-004-1072-y .
    Mitchell CJ, Churchward-Venne TA, West DW, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985). 2012;113(1):71–7. doi: 10.1152/japplphysiol.00307.2012 .
    Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016;121(1):129–38. doi: 10.1152/japplphysiol.00154.2016 .
    Sugaya M, Yasuda T, Suga T, et al. Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging. 2011;31(5):411–3. doi: 10.1111/j.1475-097X.2011.01033.x .
    Yasuda T, Brechue WF, Fujita T, et al. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27(5):479–89. doi: 10.1080/02640410802626567 .
    Crenshaw AG, Hargens AR, Gershuni DH, et al. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand. 1988;59(4):447–51.
    Counts BR, Dankel SJ, Barnett BE, et al. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53(3):438–45. doi: 10.1002/mus.24756 .
    Laurentino GC, Loenneke JP, Teixeira EL, et al. The effect of cuff cidth on cuscle adaptations after blood blow restriction training. Med Sci Sports Exerc. 2016;48(5):920–5. doi: 10.1249/MSS.0000000000000833 .
    Loenneke JP, Fahs CA, Wilson JM, et al. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011;77(5):748–52. doi: 10.1016/j.mehy.2011.07.029 .
    McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol (1985). 1996;81(5):2004–12.
    Takada S, Okita K, Suga T, et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol (1985). 2012;113(2):199–205. doi: 10.1152/japplphysiol.00149.2012 .
    Cumming KT, Paulsen G, Wernbom M, et al. Acute response and subcellular movement of HSP27, alphaB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiol (Oxf). 2014;211(4):634–46. doi: 10.1111/apha.12305 .
    Nielsen JL, Aagaard P, Bech RD, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(Pt 17):4351–61. doi: 10.1113/jphysiol.2012.237008 .
    Yasuda T, Abe T, Sato Y, et al. Muscle fiber cross-section area is increased after two weeks of twice daily KAATSU-resistance training. Int J Kaatsu Train Res. 2005;1:65–70.