Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A visual approach for interactive keyterm-based clustering (2018)

  • Authors:
  • USP affiliated authors: MINGHIM, ROSANE - ICMC
  • USP Schools: ICMC
  • DOI: 10.1145/3181669
  • Subjects: VISUALIZAÇÃO; RECONHECIMENTO DE PADRÕES; ALGORITMOS ÚTEIS E ESPECÍFICOS
  • Keywords: Document clustering; keyterm-based clustering; interactive
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1145/3181669 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1145/3181669 (Fonte: Unpaywall API)

    Título do periódico: ACM Transactions on Interactive Intelligent Systems

    ISSN: 2160-6455



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Transactions on Interactive Intelligent Systems

    ISSN: 2160-6455

    Citescore - 2017: 3.69

    SJR - 2017: 0.691

    SNIP - 2017: 2.643


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2873381-10PROD-2873381
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      NOURASHRAFEDDIN, Seyednaser; SHERKAT, Ehsan; MINGHIM, Rosane; MILIOS, Evangelos E. A visual approach for interactive keyterm-based clustering. ACM Transactions on Interactive Intelligent Systems, New York, ACM, v. 8, n. 1, p. 6:1-6:35, 2018. Disponível em: < http://dx.doi.org/10.1145/3181669 > DOI: 10.1145/3181669.
    • APA

      Nourashrafeddin, S., Sherkat, E., Minghim, R., & Milios, E. E. (2018). A visual approach for interactive keyterm-based clustering. ACM Transactions on Interactive Intelligent Systems, 8( 1), 6:1-6:35. doi:10.1145/3181669
    • NLM

      Nourashrafeddin S, Sherkat E, Minghim R, Milios EE. A visual approach for interactive keyterm-based clustering [Internet]. ACM Transactions on Interactive Intelligent Systems. 2018 ; 8( 1): 6:1-6:35.Available from: http://dx.doi.org/10.1145/3181669
    • Vancouver

      Nourashrafeddin S, Sherkat E, Minghim R, Milios EE. A visual approach for interactive keyterm-based clustering [Internet]. ACM Transactions on Interactive Intelligent Systems. 2018 ; 8( 1): 6:1-6:35.Available from: http://dx.doi.org/10.1145/3181669

    Referências citadas na obra
    C. C. Aggarwal and Ch. Zhai. 2012. A survey of text-clustering algorithms. In Mining Text Data. Springer, 77--128.
    D. Andrzejewski, X. Zhu, and M. Craven. 2009. Incorporating domain knowledge into topic modeling via dirichlet forest priors. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML’09). ACM, New York, NY, 25--32.
    P. Awasthi, M. F. Balcan, and K. Voevodski. 2017. Local algorithms for interactive clustering. J. Mach. Learn. Res. 18, 3 (2017), 1--35.
    S. Basu, A. Banerjee, and R. J. Mooney. 2002. Semi-supervised clustering by seeding. In Proceedings of the 19th International Conference on Machine Learning (ICML’02). Morgan Kaufmann, San Francisco, CA, 27--34.
    S. Basu, A. Banerjee, and R. J. Mooney. 2004. Active semi-supervision for pairwise constrained clustering. In Proceedings of the SIAM International Conference on Data Mining. 333--344.
    M. W. Berry, Mu. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. 2007. Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52, 1 (2007), 155--173.
    J. Bezdek. 1981. Pattern Recognition with Fuzzy Objective Functions. Kluwer Academic Publishers, Norwell, MA.
    D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3 (2003), 993--1022.
    M. Bostock, V. Ogievetsky, and J. Heer. 2011. D3 data-driven documents. IEEE Trans. Visual. Comput. Graph. 17, 12 (2011), 2301--2309.
    L. Boudjeloud-Assala, Ph. Pinheiro, A. Blansché, Th. Tamisier, and B. Otjacques. 2015. Interactive and iterative visual clustering. Information Visualization 15, 3 (2015), 181--197.
    E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. 2012. Dis-function: Learning distance functions interactively. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST’12). 83--92.
    J. Choo, C. Lee, C. K. Reddy, and H. Park. 2013. UTOPIAN: User-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Trans. Visual. Comput. Graph. 19, 12 (Dec 2013), 1992--2001.
    J. Chuang, C. D. Manning, and J. Heer. 2012. Termite: Visualization techniques for assessing textual topic models. In Proceedings of the International Working Conference on Advanced Visual Interfaces. ACM, New York, 74--77.
    G. V. Cormack, J. M. G. Hidalgo, and E. P. Sánz. 2007. Feature engineering for mobile SMS spam filtering. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’07). ACM, New York, NY, 871--872.
    D. Costa and G. Venturini. 2007. A visual and interactive data exploration method for large data sets and clustering. In Proceedings of the 3rd International Conference on Advanced Data Mining and Applications. Springer-Verlag, 553--561.
    W. Cui, Sh. Liu, L. Tan, C. Shi, Y. Song, Z. J. Gao, H. Qu, and X. Tong. 2011. Textflow: Towards better understanding of evolving topics in text. IEEE Trans. Visual. Comput. Graph. 17, 12 (2011), 2412--2421.
    M. des Jardins, J. MacGlashan, and J. Ferraioli. 2007. Interactive visual clustering. In Proceedings of the 12th International Conference on Intelligent User Interfaces. ACM, New York, 361--364.
    A. Endert, P. Fiaux, and C. North. 2012. Semantic interaction for visual text analytics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’12). ACM, New York, 473--482.
    A. Endert, S. Fox, D. Maiti, S. Leman, and C. North. 2012. The semantics of clustering: Analysis of user-generated spatializations of text documents. In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI’12). ACM, New York, 555--562.
    P. Fiaux, M. Sun, L. Bradel, C. North, N. Ramakrishnan, and A. Endert. 2013. Bixplorer: Visual analytics with biclusters. Computer 46, 8 (2013), 90--94.
    Th. M. J. Fruchterman and E. M. Reingold. 1991. Graph drawing by force-directed placement. Softw. Pract. Exper. 21, 11 (Nov. 1991), 1129--1164.
    L. Galavotti, F. Sebastiani, and M. Simi. 2000. Experiments on the use of feature selection and negative evidence in automated text categorization. In Proceedings of the 4th European Conference on Research and Advanced Technology for Digital Libraries. Springer-Verlag, London, UK, 59--68.
    C. Gorg, L. Zhicheng, K. Jaeyeon, Ch. Jaegul, P. Haesun, and J. Stasko. 2013. Combining computational analyses and interactive visualization for document exploration and sensemaking in jigsaw. IEEE Trans. Visual. Comput. Graph. 19, 10 (Oct 2013), 1646--1663.
    D. Greene and P. Cunningham. 2006. Practical solutions to the problem of diagonal dominance in kernel document clustering. In Proceedings of the 23rd International Conference on Machine Learning. ACM Press, 377--384.
    F. Heimerl, S. Lohmann, S. Lange, and T. Ertl. 2014. Word cloud explorer: Text analytics based on word clouds. In Proceedings of the 47th Hawaii International Conference on System Sciences (HICSS’14). 1833--1842.
    E. Hoque and G. Carenini. 2016. Interactive topic modeling for exploring asynchronous online conversations: Design and evaluation of ConVisIT. ACM Trans. Interact. Intell. Syst. 6, 1, Article 7 (Feb. 2016), 24 pages.
    X. Hu, L. Bradel, D. Maiti, L. House, C. North, and S. Leman. 2013. Semantics of directly manipulating spatializations. IEEE Trans. Visual. Comput. Graph. 19, 12 (Dec 2013), 2052--2059.
    Y. Hu, B. Boyd-Graber, and J. Satinoff, and A. Smith. 2014. Interactive topic modeling. Mach. Learn. 95, 3 (2014), 423--469.
    Y. Hu, E. Milios, and J. Blustein. 2011. Interactive feature selection for document clustering. In Proceedings of the 2011 ACM Symposium on Applied Computing (SAC’11). ACM, New York, 1143--1150.
    Y. Hu, E. Milios, and J. Blustein. 2012. Enhancing semi-supervised document clustering with feature supervision. In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC’12). ACM, New York, 929--936.
    Y. Hu, E. Milios, and J. Blustein. 2012. Semi-supervised document clustering with dual supervision through seeding. In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC’12). ACM, New York, NY, 144--151.
    Y. Hu, E. Milios, J. Blustein, and S. Liu. 2012. Personalized document clustering with dual supervision. In Proceedings of the 2012 ACM Symposium on Document Engineering (DocEng’12). ACM, New York, 161--170.
    J. Kogan, C. Nicholas, and V. Volkovich. 2003. Text mining with information-theoretic clustering. Comput. Sci. Eng. 5, 6 (Nov. 2003), 52--59.
    B. Larsen and Ch. Aone. 1999. Fast and effective text mining using linear-time document clustering. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’99). ACM, New York, NY, 16--22.
    H. Lee, J. Kihm, J. Choo, J. Stasko, and H. Park. 2012. iVisClustering: An interactive visual document clustering via topic modeling. Comput. Graph. Forum 31, 3pt3 (2012), 1155--1164.
    L. V. D. Maaten and G. E. Hinton. 2008. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9 (2008), 2579--2605.
    C. D. Manning, P. Raghavan, and H. Schütze. 2008. Flat clustering. In Introduction to Information Retrieval. Cambridge University Press, New York, NY, 253--287.
    Y. Matsuo and M. Ishizuka. 2004. Keyword extraction from a single document using word co-occurrence statistical information. Int. J. Artific. Intell. Tools 13, 01 (2004), 157--169.
    J. L. Neto, A. D. Santos, C. A. A. Kaestner, and A. A. Freitas. 2000. Document clustering and text summarization. In Proceedings of the 4th International Conference Practical Applications of Knowledge Discovery and Data Mining (PADD’00).
    S. Nourashrafeddin. 2014. Interactive Term Supervised Text Document Clustering. Ph.D. Dissertation. Faculty of Computer Science, Dalhousie University, Retrieved from https://dalspace.library.dal.ca/handle/10222/55965.
    S. Nourashrafeddin, E. Milios, and D. V. Arnold. 2013. An evolutionary algorithm for feature selective double clustering of text documents. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). IEEE, 446--453.
    S. Nourashrafeddin, E. Milios, and D. V. Arnold. 2014. An ensemble approach for text document clustering using wikipedia concepts. In Proceedings of the 2014 ACM Symposium on Document Engineering (DocEng’14). ACM, New York, 107--116.
    S. N. Nourashrafeddin, E. Milios, and D. V. Arnold. 2013. Interactive text document clustering using feature labeling. In Proceedings of the 2013 ACM Symposium on Document Engineering (DocEng’13). ACM, New York, 61--70.
    F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. 2008. Least square projection: A fast high precision multidimensional projection technique and its application to document mapping. IEEE Trans. Visual. Comput. Graph. 14, 3 (2008), 564--575.
    M. F. Porter. 1980. An algorithm for suffix stripping. Progr.: Electron. Libr. Info. Syst. 14, 3 (1980), 130--137.
    A. A. Puretskiy, G. L. Shutt, and M. W. Berry. 2010. Survey of text visualization techniques. Text Mining: Applications and Theory (2010), 105--127.
    D. Ramage, D. Hall, R. Nallapati, and Ch. D. Manning. 2009. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 (EMNLP’09). Association for Computational Linguistics, Stroudsburg, PA, 248--256.
    R. G. Rossi, R. M. Maracini, and S. O. Rezende. 2014. Analysis of domain independent statistical keyword extraction methods for incremental clustering. Learn. Nonlin. Models 12, 1 (2014), 17--37.
    P. J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53--65.
    W. Tang, H. Xiong, Sh. Zhong, and J. Wu. 2007. Enhancing semi-supervised clustering: A feature projection perspective. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’07). ACM, New York, 707--716.
    O. Turetken and R. Sharda. 2005. Clustering-based visual interfaces for presentation of web search results: An empirical investigation. Info. Syst. Front. 7, 3 (2005), 273--297.
    H. Xu, Zh. Li, Sh. Guo, and K. Chen. 2012. CloudVista: Interactive and economical visual cluster analysis for big data in the cloud. Proc. VLDB Endow. 5, 12 (2012), 1886--1889.
    Q. You, Sh. Fang, and P. Ebright. 2010. Iterative visual clustering for unstructured text mining. In Proceedings of the International Symposium on Biocomputing. ACM, New York, 26.