Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A spatial error model with continuous random effects and an application to growth convergence (2017)

  • Authors:
  • USP affiliated authors: LAURINI, MARCIO POLETTI - FEARP
  • USP Schools: FEARP
  • DOI: 10.1007/s10109-017-0256-z
  • Subjects: GEOGRAFIA; GEOCIÊNCIAS
  • Keywords: Spatial effects; Matern covariance; Growth convergence; Spatiotemporal models
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10109-017-0256-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10109-017-0256-z (Fonte: Unpaywall API)

    Título do periódico: Journal of Geographical Systems

    ISSN: 1435-5930,1435-5949



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Geographical Systems

    ISSN: 1435-5930

    Citescore - 2017: 1.58

    SJR - 2017: 0.589

    SNIP - 2017: 1.204


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FEARP2875650pcd 2875650 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LAURINI, Márcio Poletti. A spatial error model with continuous random effects and an application to growth convergence. Journal of Geographical Systems, Berlin, v. 19, n. 4, p. 371-398, 2017. Disponível em: < http://dx.doi.org/10.1007/s10109-017-0256-z > DOI: 10.1007/s10109-017-0256-z.
    • APA

      Laurini, M. P. (2017). A spatial error model with continuous random effects and an application to growth convergence. Journal of Geographical Systems, 19( 4), 371-398. doi:10.1007/s10109-017-0256-z
    • NLM

      Laurini MP. A spatial error model with continuous random effects and an application to growth convergence [Internet]. Journal of Geographical Systems. 2017 ; 19( 4): 371-398.Available from: http://dx.doi.org/10.1007/s10109-017-0256-z
    • Vancouver

      Laurini MP. A spatial error model with continuous random effects and an application to growth convergence [Internet]. Journal of Geographical Systems. 2017 ; 19( 4): 371-398.Available from: http://dx.doi.org/10.1007/s10109-017-0256-z

    Referências citadas na obra
    Abreu M, de Groot HLF, Florax RJGM (2005) Space and growth: a survey of empirical evidence and methods. Reg et Dev 21:13–44
    Acemoglu D, Johnson S, Robinson JA (2001) The colonial origins of comparative development: an empirical investigation. Am Econ Rev 91(5):1369–1401
    Acemoglu D, Robinson JA (2012) Why nations fail: the origins of power, prosperity and poverty. Crown, New York
    Andrade E, Laurini M, Madalozzo R, Pereira PLV (2004) Convergence clubs among Brazilian municipalities. Econ Lett 83(2):179–184
    Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht
    Anselin L (1995) Local indicators of spatial association: Lisa. Geogr Anal 27(2):93–115
    Anselin L (2002) Under the hood: issues in the specification and interpretation of spatial regression models. Agr Econ 27(3):247–267
    Anselin L, Rey SJ (2014) Modern spatial econometrics in practice: a guide to GeoDa, DeoDaSpace and PySAL. GeoDa Press LLC, Chicago
    Arbia G (2006) Spatial sconometrics—Statistical foundations and applications to regional convergence. Springer, Berlin
    Arbia G, Fingleton B (2008) New spatial econometric techniques and applications in regional science. Papers Reg Sci 87(3):311–317
    Arbia G, Paelinck PJH (2003) Economic convergence or divergence? Modeling the interregional dynamics of EU regions, 1985–1999. J Geogr Syst 5(3):291–314
    Azzoni CR (2001) Economic growth and regional income inequality in Brazil. Ann Reg Sci 35(1):133–152
    Barro R, Sala-i Martin X (1995) Economic growth. MIT Press, Cambridge
    Besag J (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J R Stat Soc Ser B. 36(2):192–225
    Besag J, York J, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–20
    Bivand RS, Pebesma E, Gomes-Rubio V (2013) Applied spatial data analysis with R. Springer, Heidelberg
    Blangiardo M, Cameletti M (2015) Spatial and spatio-temporal models with R-INLA. Wiley, Chichester
    Blangiardo M, Cameletti M, Baio G, Rue H (2013) Spatial and spatio-temporal models with r-inla. Spat Spatio-temporal Epidemiol 4:33–49
    Brenner SC, Scott R (2007) The mathematical theory of finite element methods. Springer, Heidelberg
    Cameletti M, Lindgren F, Simpson D, Rue H (2013) Spatio-temporal modeling of particulate matter concentration through the spde approach. AStA Adv Stat Anal 97:109–131
    Corrado L, Fingleton B (2012) Where is the economics in spatial econometrics? J Reg Sci 52(2):210–239
    Corrado L, Martin R, Weeks M (2005) Identifying and interpreting regional convergence clusters across Europe. Econ J 115:C133–c160
    Cravo TA, Becker B, Gourlay A (2015) Regional growth and SMEs in Brazil: a spatial panel approach. Reg Stud 49(12):1995–2016
    Cressie N (1993) Statistics for spatial data. Wiley, New York
    Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York
    Dall’erba S, Le Gallo J (2008) Regional convergence and the impact of European structural funds over 1989–1999: A spatial econometric analysis. Pap Reg Sci 87(2):219–244
    Durlauf S, Johnson PA (1995) Multiple regimes and cross-country growth behaviour. J Appl Econ 10(4):365–384
    Durlauf SN, Johnson PA, Temple JR (2005) Handbook of economic growth. Chapter growth econometrics, vol 1a. Elsevier, Amsterdam
    Elhorst JP (2014) Spatial econometrics: from cross-sectional data to spatial panels. Springer, Heidelberg
    Elhorst JP, Piras G, Arbia G (2010) Growth and convergence in a multiregional model with space-time dynamics. Geogr Anal 42(3):338–355
    Elhorst P, Vega SH (2013) On spatial econometric models, spillover effects. In: 53rd Congress of the European Regional Science Association: “Regional Integration: Europe, the Mediterranean and the World Economy”, 27–31 August 2013, Palermo, Italy, Louvain-la-Neuve. European Regional Science Association (ERSA)
    Fischer MM, LeSage JP (2015) A Bayesian space-time approach to identifying and interpreting regional convergence clubs in Europe. Pap Reg Sci 94(4):677–702
    Fischer MM, Stirböck C (2006) Pan-European regional income growth and club-convergence. Ann Reg Sci 40(4):693–721
    Fischer MM, Stumpner P (2008) Income distribution dynamics and cross-region convergence in Europe. J Geogr Syst 10(2):109–139
    Galor O (1996) Convergence? Inference from theoretical models. Econ J 106:1056–1069
    González-Val R (2015) Cross-sectional growth in US cities from 1990 to 2000. J Geogr Syst 17(1):83–106
    Krainski ET, Lindgren F, Simpson D, Rue H (2016). The r-inla tutorial on spde models. www.r-inla.org
    Laurini M, Andrade E, Valls Pereira PL (2005) Income convergence clubs for Brazilian municipalities: a non-parametric analysis. Appl Econ 37(18):2099–2118
    Laurini MP (2016) Income estimation using night luminosity: a continuous spatial model. Spat Demogr 4(2):83–115
    Laurini MP, Valls Pereira PL (2009) Conditional stochastic kernel estimation by nonparametric methods. Econ Lett 105(3):234–238
    Le Gallo J, Dallérba S (2006) Evaluating the temporal and spatial heterogeneity of the European convergence process, 1980–1999. J Reg Sci 46(2):269–288
    LeSage J, Pace RK (2014a) Introduction to spatial econometrics. CRC Press, Boca Raton
    LeSage JP, Fischer MM (2008) Spatial growth regressions: Model specification, estimation and interpretation. Spat Econ Anal 3(3):275–304
    LeSage JP, Pace RK (2014b) The biggest myth in spatial econometrics. Econometrics 2(4):217
    Lim U (2016) Regional income club convergence in US BEA economic areas: a spatial switching regression approach. Ann Reg Sci 56(1):273–294
    Lindgren F, Rue H, Lindstrom J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B. 73(4):423–498
    Monasterio LM (2010) Brazilian spatial dynamics in the long term (1872–2000): “path dependency” or “reversal of fortune”? J Geogr Syst 12(1):51–67
    Mossi MB, Aroca P, Fernandez IJ, Azzoni CR (2003) Growth dynamics and space in Brazil. Int Reg Sci Rev 26(3):393–418
    Mur J, López F, Angulo A (2010) Instability in spatial error models: an application to the hypothesis of convergence in the European case. J Geogr Syst 12(3):259–280
    Quah D (1997) Empirics for growth and distribution: Stratification, polarization, and convergence clubs. J Econ Growth 2:27–59
    Quah D (2006) Empirical growth models with spatial effects. Pap Reg Sci 85(2):177–198
    Ramajo J, Márquez MA, Hewings GJ, Salinas MM (2008) Spatial heterogeneity and interregional spillovers in the European Union: Do cohesion policies encourage convergence across regions? Eur Econ Rev 52(3):551–567
    Rey SJ, Janikas MJ (2005) Regional convergence, inequality and space. J Econ Geogr 5(2):155–176
    Rey SJ, Montouri BD (1999) US regional income convergence: a spatial econometric perspective. Reg Stud 33(2):143–156
    Rozanov JA (1977) Markov random fields and stochastic partial differential equations. Math URSS Sb 32:515–534
    Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman & Hall - CRC, Boca Raton
    Rue H, Martino S, Chopin N (2009) Approximated Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J R Stat Soc Ser B 71(2):319–392
    Sala-i Martin X (1996a) The classical approach to convergence analysis. Econ J 106(437):1019–1036
    Sala-i Martin X (1996b) Regional cohesion: evidence and theories of regional growth and convergence. Eur Econ Rev 40(6):1325–1352
    Simpson D, Lindgren F, Rue H (2012) Think continuous: Markovian Gaussian models in spatial statistics. Spat Stat 1(1):16–29
    Solow R (1956) A contribution to the theory of economic growth. Q J Econ 70(1):65–94
    Swan TW (1956) Economic growth and capital accumulation. Econ Rec 32:334–361
    Wall MM (2004) A close look at the spatial structure implied by the CAR and SAR models. J Stat Plan Inference 121(2):311–324
    Whittle P (1954) On stationary processes on the plane. Biometrika 41(7):434–449