Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Path-value functions for which Dijkstra’s algorithm returns optimal mapping (2018)

  • Authors:
  • USP affiliated authors: MIRANDA, PAULO ANDRE VECHIATTO DE - IME
  • USP Schools: IME
  • DOI: 10.1007/s10851-018-0793-1
  • Subjects: PROCESSAMENTO DE IMAGENS; VISÃO COMPUTACIONAL
  • Keywords: Dijkstra’s algorithm; graph-search algorithms; image foresting transform; connectivity functions
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10851-018-0793-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10851-018-0793-1 (Fonte: Unpaywall API)

    Título do periódico: Journal of Mathematical Imaging and Vision

    ISSN: 0924-9907,1573-7683



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Mathematical Imaging and Vision

    ISSN: 0924-9907

    Citescore - 2017: 2.17

    SJR - 2017: 0.724

    SNIP - 2017: 1.437


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IME2879101-10PROD-2879101
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CIESIELSKI, Krzysztof Chris; FALCÃO, Alexandre Xavier; MIRANDA, Paulo André Vechiatto de. Path-value functions for which Dijkstra’s algorithm returns optimal mapping. Journal of Mathematical Imaging and Vision, New York, Springer New York LLC, v. 60, n. 7, p. 1025–1036, 2018. Disponível em: < https://dx.doi.org/10.1007/s10851-018-0793-1 > DOI: 10.1007/s10851-018-0793-1.
    • APA

      Ciesielski, K. C., Falcão, A. X., & Miranda, P. A. V. de. (2018). Path-value functions for which Dijkstra’s algorithm returns optimal mapping. Journal of Mathematical Imaging and Vision, 60( 7), 1025–1036. doi:10.1007/s10851-018-0793-1
    • NLM

      Ciesielski KC, Falcão AX, Miranda PAV de. Path-value functions for which Dijkstra’s algorithm returns optimal mapping [Internet]. Journal of Mathematical Imaging and Vision. 2018 ; 60( 7): 1025–1036.Available from: https://dx.doi.org/10.1007/s10851-018-0793-1
    • Vancouver

      Ciesielski KC, Falcão AX, Miranda PAV de. Path-value functions for which Dijkstra’s algorithm returns optimal mapping [Internet]. Journal of Mathematical Imaging and Vision. 2018 ; 60( 7): 1025–1036.Available from: https://dx.doi.org/10.1007/s10851-018-0793-1

    Referências citadas na obra
    Alexandre, E.B., Chowdhury, A.S., Falcão, A.X., de Miranda, P.A.V.: IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform. In: XXVIII SIBGRAPI—Conference on Graphics, Patterns and Images, pp. 337–344 (2015)
    Amorim, W.P., Falcão, A.X., Papa, J.P., Carvalho, M.H.: Improving semi-supervised learning through optimum connectivity. Pattern Recognit. 60, 72–85 (2016)
    Andaló, F.A., Miranda, P.A.V., Torres, R.da S., Falcão, A.X.: Shape feature extraction and description based on tensor scale. Pattern Recognit. 43(1), 26–36 (2010)
    Bai, X., Sapiro, G.: Geodesic matting: a framework for fast interactive image and video segmentation and matting. Int. J. Comput. Vision 82, 113–132 (2009)
    Bergo, F.P.G., Falcão, A.X., Miranda, P.A.V., Rocha, L.M.: Automatic image segmentation by tree pruning. J. Math. Imaging Vision 29(2–3), 141–162 (2007)
    Cappabianco, F.A.M., Falcão, A.X., Yasuda, C.L., Udupa, J.K.: Brain tissue MR-image segmentation via optimum-path forest clustering. Comput. Vision Image Underst. 116(10), 1047–1059 (2012)
    Carvalho, B.M., Gau, C.J., Herman, G.T., Kong, T.Y.: Algorithms for fuzzy segmentation. Pattern Anal. Appl. 2, 73–81 (1999)
    Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of multiple objects. Discrete Appl. Math. 151, 55–77 (2005)
    Ciesielski, K.C., Herman, G.T., Kong, T.Y.: General theory of fuzzy connectedness segmentations. J. Math. Imaging Vision 55(3), 304–342 (2016)
    Ciesielski, K.C., Miranda, P.A.V., Falcão, A.X., Udupa, J.K.: Joint graph cut and relative fuzzy connectedness image segmentation algorithm. Med. Image Anal. 17, 1046–1057 (2013)
    Ciesielski, K.C., Strand, R., Malmberg, F., Saha, P.K.: Efficient algorithm for finding the exact minimum barrier distance. Comput. Vision Image Underst. 123, 53–64 (2014)
    Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based image segmentation I: equivalence of affinities. Comput. Vision Image Underst. 114, 146–154 (2010)
    Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based image segmentation II: defining and recognizing truly novel affinities. Comput. Vision Image Underst. 114, 155–166 (2010)
    Ciesielski, K.C., Udupa, J.K.: Region-based segmentation: fuzzy connectedness, graph cut, and other related algorithms. In: Deserno, T.M. (ed.) Biomedical Image Processing, pp. 251–278. Springer, Berlin (2011)
    Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis. J. Math. Imaging Vision 44, 375–398 (2012)
    Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy connectedness for multiple objects, allowing multiple seeds. Comput. Vision Image Underst. 107, 160–182 (2007)
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1990)
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)
    Falcão, A.X., Costa, L.F., da Cunha, B.S.: Multiscale skeletons by image foresting transform and its applications to neuromorphometry. Pattern Recognit. 35(7), 1569–1580 (2002)
    Falcão, A.X., da Cunha, B.S., Lotufo, R.A.: Design of connected operators using the image foresting transform. SPIE Med. Imaging 4322, 468–479 (2001)
    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26, 19–29 (2004)
    Falcão, A.X., Udupa, J.K.: A 3D generalization of user-steered live wire segmentation. Med. Image Anal. 4(4), 389–402 (2000)
    Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: live-wire-on-the-fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000)
    Frieze, A.: Minimum paths in directed graphs. Oper. Res. Q. 28(2), 339–346 (1977)
    Herman, G.T., Carvalho, B.M.: Multiseeded segmentation using fuzzy connectedness. IEEE Trans. Pattern Anal. Mach. Intell. 23, 460–474 (2001)
    Lotufo, R.A., Falcão, A.X., Zampirolli, F.A.: IFT-watershed from gray scale marker. In: XV SIBGRAPI—Brazillian Symp. on Computer Graphics and Image Processing, pp. 146–152 (2002)
    Mansilha, L.A.C., Jackowski, M.P., Miranda, P.A.V.: Image foresting transform with geodesic star convexity for interactive image segmentation. In: 20th IEEE Conference on Image Processing (ICIP), pp. 4054–4058 (2013)
    Mansilla, L.A.C., Miranda, P.A.V. Cappabianco, F.A.M.: Oriented image foresting transform segmentation with connectivity constraints. In: IEEE International Conference on Image Processing (ICIP), pp. 289–296 (2016)
    Miranda, P.A.V., Falcão, A.X., Spina, T.V.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)
    Miranda, P.A.V., Mansilla, L.A.C.: Oriented image foresting transform segmentation by seed competition. IEEE Trans. Image Process. 23(1), 389–398 (2014)
    Papa, J.P., Falcão, A.X., de Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recognit. 45(1), 512–520 (2012)
    Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. Int. J. Imaging Syst. Technol. 19(2), 120–131 (2009)
    Ragnemalm, I.: Fast erosion and dilation by contour processing and thresholding of distance maps. Pattern Recognit. Lett. 13, 161–166 (1992)
    Reddy, K.R.U.K.: A survey of the all-pairs shortest paths problem and its variants in graphs. Acta Univ. Sapientiae Informatica 8(1), 16–40 (2016)
    Rocha, L.M., Cappabianco, F.A.M., Falcão, A.X.: Data clustering as an optimum-path forest problem with applications in image analysis. Int. J. Imaging Syst. Technol. 19(2), 50–68 (2009)
    Saito, P.T.M., Suzuki, C.T.N., Gomes, J.F., de Rezende, P.J., Falcão, A.X.: Robust active learning for the diagnosis of parasites. Pattern Recognit. 8(11), 3572–3583 (2015)
    Spina, T.V., de Miranda, P.A.V., Falcão, A.X.: Hybrid approaches for interactive image segmentation using the Live Markers paradigm. IEEE Trans. Image Process. 23(12), 5756–5769 (2014)
    Strand, R., Ciesielski, K.C., Malmberg, F., Saha, P.K.: The minimum barrier distance. Comput. Vision Image Underst. 117(4), 429–437 (2013)
    Torres, R.S., Falcão, A.X.: Contour salience descriptors for effective image retrieval and analysis. Image Vision Comput. 25(1), 3–13 (2007)
    Torres, R.S., Falcão, A.X., Costa, L.F.: A graph-based approach for multiscale shape analysis. Pattern Recognit. 37(6), 1163–1174 (2004)
    Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1485–1500 (2002)
    Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58, 246–261 (1996)