Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Reliable and smart decision support system for emergency management based on crowdsourcing information (2018)

  • Authors:
  • USP affiliated authors: TRAINA, AGMA JUCI MACHADO - ICMC ; RODRIGUES JUNIOR, JOSÉ FERNANDO - ICMC
  • USP Schools: ICMC; ICMC
  • DOI: 10.1007/978-3-319-74002-7_9
  • Subjects: BANCO DE DADOS; SISTEMAS DE APOIO À DECISÃO; RECONHECIMENTO DE PADRÕES
  • Keywords: Emergency management; Crowdsourcing information; Multimedia data analysis; Decision support system
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/978-3-319-74002-7_9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/978-3-319-74002-7_9 (Fonte: Unpaywall API)

    Título do periódico: Studies in Computational Intelligence

    ISSN: 1860-949X,1860-9503



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Studies in Computational Intelligence

    ISSN: 1860-949X

    Citescore - 2017: 0.67

    SJR - 2017: 0.184

    SNIP - 2017: 0.407


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2881313-10PROD-2881313
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      VILLELA, Karina; NASS, Claudia; NOVAIS, Renato; et al. Reliable and smart decision support system for emergency management based on crowdsourcing information. In: Exploring intelligent decision support systems : current state and new treds[S.l: s.n.], 2018.Disponível em: DOI: 10.1007/978-3-319-74002-7_9.
    • APA

      Villela, K., Nass, C., Novais, R., Simões Jr., P., Traina, A. J. M., Rodrigues Junior, J. F., et al. (2018). Reliable and smart decision support system for emergency management based on crowdsourcing information. In Exploring intelligent decision support systems : current state and new treds. Cham: Springer. doi:10.1007/978-3-319-74002-7_9
    • NLM

      Villela K, Nass C, Novais R, Simões Jr. P, Traina AJM, Rodrigues Junior JF, Menendez JM, Kurano J, Franke T, Poxrucker A. Reliable and smart decision support system for emergency management based on crowdsourcing information [Internet]. In: Exploring intelligent decision support systems : current state and new treds. Cham: Springer; 2018. Available from: http://dx.doi.org/10.1007/978-3-319-74002-7_9
    • Vancouver

      Villela K, Nass C, Novais R, Simões Jr. P, Traina AJM, Rodrigues Junior JF, Menendez JM, Kurano J, Franke T, Poxrucker A. Reliable and smart decision support system for emergency management based on crowdsourcing information [Internet]. In: Exploring intelligent decision support systems : current state and new treds. Cham: Springer; 2018. Available from: http://dx.doi.org/10.1007/978-3-319-74002-7_9

    Referências citadas na obra
    United Nations Department of Humanitarian Affairs.: Internationally Agreed Glossary of Basic Terms related to Disaster Management. Technical report (1992). http://reliefweb.int/sites/reliefweb.int/files/resources/004DFD3E15B69A67C1256C4C006225C2-dha-glossary-1992.pdf . Accessed 15 July 2017
    U.S. Department of Homeland Security.: National Incident Management System. Technical report (2008). https://www.fema.gov/pdf/emergency/nims/NIMS_core.pdf . Accessed 15 July 2017
    BMI (German Federal Ministry of the Interior).: Auskunftsunterlage Krisenmanagement, p. 222 (2011)
    Engelbrecht, A., Borges, M., Vivacqua, A.: Digital tabletops for situational awareness in emergency situations. In: 15th International Conference on Computer Supported Cooperative Work in Design, pp. 669–676. IEEE (2011)
    Jolie, K.: Love Parade Duisburg, July 24, Multiperspective-video (2011). https://www.youtube.com/watch?v=up95bUU3L0M . Accessed 14 July 2017
    Villela, K., Breiner, K., Nass, C., Mendonca, M., Vieira, V.: A Smart and reliable crowdsourcing solution for emergency and crisis management. In: IDIMT 2014. 22nd Interdisciplinary Information Management Talks: Networking Societies—Cooperation and Conflict, Poděbrady, pp. 213–220 (2014)
    CRISMA—Modelling Crisis Management for Improved Actions and Preparedness (2013). http://www.crismaproject.eu/index.htm . Accessed 14 July 2017
    Clausthal, T.U.: Rettungsassistenzsystem für Katastropheneinsätze (2011). http://www2.in.tu-clausthal.de/~Rettungsassistenzsystem/ . Accessed 14 July 2017
    Wu, A., Convertino, G., Ganoe, C., et al.: Supporting collaborative sense-making in emergency management through geo-visualization. Int. J. Hum Comput. Stud. 71(1), 4–23 (2013)
    Tomoyuki, I., Akira, S., Noriki, U., et al.: A unified large scale disaster information presentation system using ultra GIS based tiled display environment. In: 15th International Conference on Network-Based Information Systems, pp. 550–555. IEEE (2012)
    Kilgore, R., Godwin, A., Davis, A., et al.: A Precision Information Environment (PIE) for emergency responders: providing collaborative manipulation, role-tailored visualization, and integrated access to heterogeneous data. In: HST’13. 2013 IEEE International Conference on Technologies for Homeland Security, pp. 766–771. IEEE (2013)
    Poblet, M., García-Cuesta, E., Casanovas, P.: Crowdsourcing tools for disaster management: a review of platforms and methods. In: Casanovas, P., Pagallo, U., Palmirani, M. et al. (eds.) AI Approaches to the Complexity of Legal Systems. Lectures Notes in Computer Science, vol. 8929, pp. 261–274. Springer, Berlin
    Rogstadius, J., Vukovic, M., Teixeira, C., et al.: CrisisTracker: crowdsourced social media curation for disaster awareness. IBM J. Res. Dev. 57(5), 4:1–4:13 (2013)
    Sahana Software Foundation.: Sahana Home of the Free and Open Source Disaster Management System (2012). http://www.sahanafoundation/org/about . Accessed 14 July 2017
    Heinzelmann, J., Waters, C.: Crowdsourcing Crisis Information in Disaster-Affected Haiti. Special Report, United States Institute of Peace (2010)
    Zook, M., Graham, M., Shelton, T., et al.: Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake. World Med. Health Policy 2(2), 7–33 (2010)
    Ushahidi (2017). https://www.ushahidi.com/ . Accessed 14 July 2017
    Newman, S.: Building Microservices. O’Reilly Media ISBN 10:1-4919-5035-8 (2015)
    Nass, C., Breiner, B., Villela, K.: Mobile crowdsourcing solution for emergency situations: human reaction model and strategy for interaction design. In: 1st International Workshop on User Interfaces for Crowdsourcing and Human Computation, held at AVI 2014, Como (2014). http://www.st.ewi.tudelft.nl/~bozzon/CrowdUI2014Papers/crowdui2014_submission_5.pdf
    Luqman, F., Sun, F., Cheng, H., et al.: Prioritizing data in emergency response based on context, message content and role. In: 1st International Conference on Wireless Technologies for Humanitarian Relief, pp. 63–69. ACM (2011)
    Fajardo, J., Yasumoto, K., Ito, M.: Content-based data prioritization for fast disaster images collection in delay tolerant network. In: 7th International Conference on Mobile Computing and Ubiquitous Networking, pp. 147–152. IEEE (2014)
    GATE: General architecture for text engineering. http://gate.ac.uk . Accessed 15 July 2017
    RESCUER Project.: D3.2.3 Data Analysis Method Description 3. Project Deliverable (2017). http://143.107.183.136/?page_id=11037 . Accessed 14 July 2017
    Chino, D., Avalhais, L., Rodrigues, J. Jr, et al.: BoWFire: Detection of Fire in Still Images by Integrating Pixel Color and Texture Analysis. In: SIBGRAPI 2015. 28th Conference on Graphics, Patterns and Images, Salvador, pp. 95–102 (2015)
    BoWFire Image Dataset.: University of São Paulo, São Carlos Campus (2016). http://gbdi.icmc.usp.br/en/projects/#/projects/2016-bowfire-agma . Accessed 15 July 2017
    Cazzolato, M., Bedo, M., Costa, A., et al.: Unveiling smoke in social images with the SmokeBlock approach. In: 31st ACM Symposium on Applied Computing, Pisa, pp. 1–6. ACM (2016)
    Zauner, C.: Implementation and benchmarking of perceptual image hash functions. Master’s thesis, Upper Austria University of Applied Sciences (2010)
    Avalhais, L., Rodrigues, J. Jr, Traina, A.: Fire detection on unconstrained videos using colour-aware spatial modelling and motion flow. In: ICTAI 2016. 28th IEEE International Conference on Tools with Artificial Intelligence, San Jose, pp. 1–8. IEEE (2016)
    Dalal, N, Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR’05. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)
    INRIA Person Dataset (2006). http://pascal.inrialpes.fr/data/human/INRIAPerson.tar . Accessed 15 July 2017
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. Joint Pattern Recognition Symposium, pp. 214–223. Springer, Berlin (2007)
    Pérez, J., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 optical flow estimation. Image Process. Line 3, 137–150 (2013)
    Pereira, J., Novais, R., Vieira, V., et al.: RESCUER news: a public communication tool for crisis situations. In: 1st Workshop on Collaboration and Decision Making in Crisis Situations, held at ACM CSCW 2016, San Francisco (2016)
    Barros, R., Kislansky, P., Salvador, L., et al.: EDXL-RESCUER ontology: conceptual Model for semantic integration. In: ISCRAM 2015. 12th International Conference on Information Systems for Crisis Response and Management, Kristiansand (2015). http://idl.iscram.org/files/rebecabarros/2015/1183_RebecaBarros_etal2015.pdf . Accessed 30 Sept 2017
    Holl, K., Nass, C., Villela, K., Vieira, V.: Towards a lightweight approach for on-site interaction evaluation of safety-critical mobile systems. In: 13th International Conference on Mobile Systems and Pervasive Computing, Quebec. Procedia Computer Science, vol. 94, pp. 41–48. Elsevier (2016)
    Holl, K., Nass, C., Vieira, V., Villela, K.: Safety-critical mobile systems—the RESCUER interaction evaluation approach. J. Ubiquit. Syst. Pervasive Netw. 9(1), 1–10 (2017)