Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation (2017)

  • Authors:
  • USP affiliated authors: PORTO, GECIÂNE SILVEIRA - FEARP ; RUSSO, ELISA MARIA DE SOUSA - FCFRP ; COVAS, DIMAS TADEU - FMRP
  • USP Schools: FEARP; FCFRP; FMRP
  • DOI: 10.1007/s10565-016-9377-2
  • Subjects: DIFERENCIAÇÃO CELULAR; CÉLULAS-TRONCO; CÉLULAS SANGUÍNEAS; PATENTE
  • Keywords: BLOOD CELLS; CLINICAL TRIALS; HEMATOPOIETIC DIFFERENTIATION; INDUCED PLURIPOTENT STEM CELLS; PATENT LANDSCAPE
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10565-016-9377-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10565-016-9377-2 (Fonte: Unpaywall API)

    Título do periódico: Cell Biology and Toxicology

    ISSN: 0742-2091,1573-6822



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Cell Biology and Toxicology

    ISSN: 0742-2091

    Citescore - 2017: 4.8

    SJR - 2017: 0.924

    SNIP - 2017: 0.717


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FEARP2882594pcd 2882594 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PAES, Bárbara Cristina Martins Fernandes; MOÇO, Pablo Diego; PEREIRA, Cristiano Gonçalves; et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biology and Toxicology, Dordrecht, v. 33, n. 3, p. 233-250, 2017. Disponível em: < http://dx.doi.org/10.1007/s10565-016-9377-2 > DOI: 10.1007/s10565-016-9377-2.
    • APA

      Paes, B. C. M. F., Moço, P. D., Pereira, C. G., Porto, G. S., Russo, E. M. de S., Reis, L. C. J., et al. (2017). Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biology and Toxicology, 33( 3), 233-250. doi:10.1007/s10565-016-9377-2
    • NLM

      Paes BCMF, Moço PD, Pereira CG, Porto GS, Russo EM de S, Reis LCJ, Covas DT, Picanço-Castro V. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation [Internet]. Cell Biology and Toxicology. 2017 ; 33( 3): 233-250.Available from: http://dx.doi.org/10.1007/s10565-016-9377-2
    • Vancouver

      Paes BCMF, Moço PD, Pereira CG, Porto GS, Russo EM de S, Reis LCJ, Covas DT, Picanço-Castro V. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation [Internet]. Cell Biology and Toxicology. 2017 ; 33( 3): 233-250.Available from: http://dx.doi.org/10.1007/s10565-016-9377-2

    Referências citadas na obra
    Abed S, Tubsuwan A, Chaichompoo P, Park IH, Pailleret A, Benyoucef A, et al. Transplantation of Macaca cynomolgus iPS-derived hematopoietic cells in NSG immunodeficient mice. Haematologica. 2015;100(10):e428–31.
    Agarwal S, Loh Y-H, McLoughlin EM, Huang J, Park I-H, Miller JD, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature. 2010;464(7286):292–6.
    Amabile G, Welner RS, Nombela-Arrieta C, D’Alise AM, Di Ruscio A, Ebralidze AK, et al. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood. 2013;121(8):1255–64.
    Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494(7435):100–4.
    Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17(3):170–82.
    Baghbaderani BA, Tian X, Neo BH, Burkall A, Dimezzo T, Sierra G, et al. cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Reports. 2015;5(4):647–59.
    Bedel A, Pasquet JM, Lippert É, Taillepierre M, Lagarde V, Dabernat S, et al. 2013 Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation. Eaves CJ, (ed). PLoS One. 8(8):e71596.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.
    Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 2010;4(2):107–16.
    Briquet A, Dubois S, Bekaert S, Dolhet M, Beguin Y, Gothot A. Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica. 2010;95(1):47–56.
    Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X, et al. 2010 Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. Unutmaz D, (ed.) PLoS One. 5(6):e11373.
    Cerdan C, McIntyre BAS, Mechael R, Levadoux-Martin M, Yang J, Lee JB, et al. Activin a promotes hematopoietic fated mesoderm development through upregulation of brachyury in human embryonic stem cells. Stem Cells Dev. 2012;21(15):2866–77.
    Cherry ABC, Gagne KE, Mcloughlin EM, Baccei A, Gorman B, Hartung O, et al. Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells. 2013;31(7):1287–97.
    Chou B-K, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21(3):518–29.
    Connelly JP, Kwon EM, Gao Y, Trivedi NS, Elkahloun AG, Horwitz MS, et al. Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. Blood. 2014;124(12):1926–30.
    Dorn I, Klich K, Arauzo-Bravo MJ, Radstaak M, Santourlidis S, Ghanjati F, et al. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica. 2015;100(1):32–41.
    Dowey SN, Huang X, Chou B-K, Ye Z, Cheng L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 2012;7(11):2013–21.
    Escobedo-Cousin M, Jackson N, Laza-Briviesca R, Ariza-McNaughton, L, Luevano M, Derniame S, et al. 2015 Natural killer cells improve hematopoietic stem cell engraftment by increasing stem cell clonogenicity In: Rameshwar P, (ed.) Vitro and in a humanized mouse model. PLoS One. 10(10):e0138623.
    Fernández-García M, Yañez RM, Sánchez-Domínguez R, Hernando-Rodriguez M, Peces-Barba M, Herrera G, et al. Mesenchymal stromal cells enhance the engraftment of hematopoietic stem cells in an autologous mouse transplantation model. Stem Cell Res Ther. 2015;6(1):165.
    Fujita A, Uchida N, Haro-Mora JJ, Winkler T, Tisdale J. β-Globin-expressing definitive erythroid progenitor cells generated from embryonic and induced pluripotent stem cell-derived sacs. Stem Cells. 2016;34(6):1541–52.
    Gaj T, Gersbach CA, Barbas CFZFN. TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.
    Gandre-Babbe S, Paluru P, Aribeana C, Chou ST, Bresolin S, Lu L, et al. Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood. 2013;121(24):4925–9.
    Garber KRIKEN. Suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol Nature Research. 2015;33(9):890–1.
    Garçon L, Ge J, Manjunath SH, Mills JA, Apicella M, Parikh S, et al. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood. 2013;122(6):912–21.
    Ge J, Apicella M, Mills JA, Garçon L, French DL, Weiss MJ, et al. 2015 Dysregulation of the transforming growth factor β pathway in Induced pluripotent stem cells generated from patients with Diamond Blackfan anemia. Freeman J, (ed.). PLoS One. 10(8):e0134878.
    Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, Coffey PJ, et al.. 2013 A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. Wilber AC, (ed). PLoS One. Public Library of Science 8(11):e81622.
    Goldring CEP, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell. 2011;8(6):618–28.
    Gori JL, Butler JM, Chan Y-Y, Chandrasekaran D, Poulos MG, Ginsberg M, et al. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J Clin Invest. 2015;125(3):1243–54.
    Gu B, Mills JA, Apicella M, Fan J, French DL, Bessler M, et al. Phenotypic rescue of induced pluripotent stem cells from dyskeratosis congenita patients by ectopic expression of DKC1 but not TERC. Blood. 2013;122(21)
    Hafez M, Hausner G, Bonen L. Homing endonucleases: DNA scissors on a mission. Genome. 2012;55(8):553–69.
    Hermanson DL, Bendzick L, Pribyl L, McCullar V, Vogel RI, Miller JS, et al. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells. 2016;34(1):93–101.
    Hirata S, Takayama N, Jono-Ohnishi R, Endo H, Nakamura S, Dohda T, et al. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest. 2013;123(9):3802–14.
    Hong SG, Dunbar CE, Winkler T. Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol Ther. 2013;21(2):272–81.
    Hosoi M, Kumano K, Taoka K, Arai S, Kataoka K, Ueda K, et al. Generation of induced pluripotent stem cells derived from primary and secondary myelofibrosis patient samples. ISEH—International Society for Experimental Hematology. 2014;42(9):816–25. doi: 10.1016/j.exphem.2014.03.010 .
    Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015;33(5):1470–9.
    Iizuka H, Kagoya Y, Kataoka K, Yoshimi A, Miyauchi M, Taoka K, et al. Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet disorder with propensity to myeloid malignancy restores normal megakaryopoiesis. ISEH—International Society for Experimental Hematology. 2015;43(10):849–57.
    Izawa K, Kakegawa T, Yamamoto M, Tojo A. Forced HoxB4 sustains CD45-c-kit+ pre-hematopoietic stem cells (HSCs) derived from murine induced-pluripotent stem cells, which develop long-term and short-term repopulating HSCs according to GATA2 expression level. Blood. 2014;124(21)
    Jia B, Chen S, Zhao Z, Liu P, Cai J, Qin D, et al. Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells. Life Sci. 2014;108(1):22–9.
    Kang X, Yu Q, Huang Y, Song B, Chen Y, Gao X, et al. Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. Johnson R, editor. PLoS One 2015 10(7):e0131128.
    Kappler-Gratias S, Peyrard T, Beolet M, Amiranoff D, Menanteau C, Dubeaux I, et al. Blood group genotyping by high-throughput DNA analysis applied to 356 reagent red blood cell samples. Transfusion. 2011;51(1):36–42.
    Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci. 2001;98(19):10716–21.
    Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol. 1993;13(1):473–86.
    Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zúñiga-Pflücker JC, et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2(6):1722–35.
    Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H, Sawamura Y, et al. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci. 2013;110(51):20569–74.
    Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M, et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood. 2012;119(26):6234–42.
    Lacaud G. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood. 2002;100(2):458–66.
    Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica. 2010;95(10):1651–9.
    Lengerke C, Grauer M, Niebuhr NI, Riedt T, Kanz L, Park I-H, et al. Hematopoietic development from human induced pluripotent stem cells. Ann N Y Acad Sci. 2009;1176(1):219–27.
    Liang HC-Y, Holmes R, Zúñiga-Pflücker JC. Directed differentiation of embryonic stem cells to the T-lymphocyte lineage. Methods Mol Biol. 2013:119–28.
    Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson RA, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res Elsevier. 2015;338(2):203–13.
    Liu X, Wu M, Peng Y, Chen X, Sun J, Huang F, et al. Improvement in poor graft function after allogeneic hematopoietic stem cell transplantation upon administration of mesenchymal stem cells from third-party donors: a pilot prospective study. Cell Transplant. 2014;23(9):1087–98.
    Loh Y-H, Agarwal S, Park I-H, Urbach A, Huo H, Heffner GC, et al. Generation of induced pluripotent stem cells from human blood. Blood. 2009;113(22):5476–9.
    Loh Y-H, Hartung O, Li H, Guo C, Sahalie JM, Manos PD, et al. Reprogramming of T cells from human peripheral blood. Cell Stem Cell. 2010;7(1):15–9.
    Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free-thalassemia induced pluripotent stem cells. J Biol Chem. 2013;288(48):34671–9.
    Mack AA, Kroboth S, Rajesh D, Wang WB. 2011 Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non-integrating episomal vectors. Borlongan C V., (ed.) PLoS One. 6(11):e27956.
    Mathews DJH, Cook-Deegan R, Bubela T. Patents and misplaced angst: lessons for translational stem cell research from genomics. Cell Stem Cell. 2013;12(5):508–12.
    Minami E, Murry CE. Response to “comment on ‘transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response’”. FASEB J. 2007;21(7):1291–1.
    Morishima T, Watanabe K -i, Niwa A, Hirai H, Saida S, Tanaka T, et al. Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. 2014;99(1):19–27.
    Mulero-Navarro S, Sevilla A, Roman AC, Lee D-F, D’Souza SL, Pardo S, et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. Cell Rep. 2015;13(3):504–15.
    Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4(3594)
    Nayak RC, Trump LR, Aronow BJ, Myers K, Mehta P, Kalfa T, et al. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest. 2015;125(8):3103–16.
    Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106(5):1601–3.
    Ng ES, Davis RP, Hatzistavrou T, Stanley EG, Elefanty AG. . 2008. Directed differentiation of human embryonic stem cells as spin embryoid bodies and a description of the hematopoietic blast colony forming assay. Curr. Protoc. Stem Cell Biol. Hoboken, NJ, USA: Wiley
    Nishizawa M, Chonabayashi K, Nomura M, Tanaka A, Nakamura M, Inagaki A, et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell. 2016;19(3):341–54.
    Niu X, He W, Song B, Ou Z, Fan D, Chen Y, et al. Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells. J Biol Chem. 2016;291(32):16576–85.
    Ohmine S, Dietz AB, Deeds MC, Hartjes KA, Miller DR, Thatava T, et al. Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells. Stem Cell Res. Ther. 2011;2(6):46.
    Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol. 2006;34(12):1635–42.
    Park C-Y, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell Elsevier Inc. 2015;17(2):213–20.
    Peyrard T, Bardiaux L, Krause C, Kobari L, Lapillonne H, Andreu G, et al. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev. 2011;25(3):206–16.
    Pick M, Azzola L, Osborne E, Stanley EG, Elefanty AG. Generation of megakaryocytic progenitors from human embryonic stem cells in a feeder- and serum-free medium. Zambidis ET, editor. PLoS One 2013 8(2):e55530.
    Pineault N, Robert A, Cortin V, Boyer L. Ex vivo differentiation of cord blood stem cells into megakaryocytes and platelets. Methods Mol Biol. 2013:205–24.
    Priest CA, Manley NC, Denham J, Wirth ED, Lebkowski JS. Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med. 2015;10(8):939–58.
    Ramos-Mejía V, Montes R, Bueno C, Ayllón V, Real PJ, Rodríguez R, et al. Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. Panepucci RA, editor. PLoS One 2012 7(4):e35824.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.
    Rao MS. LULL(ed) into complacency: a perspective on licenses and stem cell translational science. Stem Cell Res. Ther. 2013;4(4):98.
    Raya Á, Rodríguez-Pizà I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460(7251):53–9.
    RIKEN-Foundation for Biomedical Research and Innovation. Pilot safety study of iPSC-based intervention for wet-type AMD [Internet]. RIKEN-IBRI. 2013 [cited 2016 Sep 9]. Available from: http://www.riken-ibri.jp/AMD/english/research/index.html
    Roberts M, Wall IB, Bingham I, Icely D, Reeve B, Bure K, et al. The global intellectual property landscape of induced pluripotent stem cell technologies. Nat Biotechnol. 2014;32(8):742–8.
    Rodrigues GMC, Rodrigues CAV, Fernandes TG, Diogo MM, Cabral JMS. Clinical-scale purification of pluripotent stem cell derivatives for cell-based therapies. Biotechnol J. 2015;10(8):1103–14.
    Rowe RG, Mandelbaum J, Zon LI, Daley GQ. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell. 2016;18(6):707–20.
    Sakurai M, Kunimoto H, Watanabe N, Fukuchi Y, Yuasa S, Yamazaki S, et al. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia. 2014;28(12):2344–54.
    Sayed N, Liu C, Wu JC. Translation of human-induced pluripotent stem cells. J Am Coll Cardiol. 2016;67(18):2161–76.
    Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol. 2014;33(1):58–63.
    Scott CT. The zinc finger nuclease monopoly. Nat Biotechnol. 2005;23(8):915–8.
    Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, et al. Situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 2011;29(11):1717–26.
    Simonson OE, Domogatskaya A, Volchkov P, Rodin S. The safety of human pluripotent stem cells in clinical treatment. Ann Med. 2015;47(5):370–80.
    Song B, Fan Y, He W, Zhu D, Niu X, Wang D, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24(9):1053–65.
    Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010;7(1):20–4.
    Stephenson E, Jacquet L, Miere C, Wood V, Kadeva N, Cornwell G, et al. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product–free environment. Nat Protoc. 2012;7(7):1366–81.
    Sternberg SH, LaFrance B, Kaplan M, Doudna JA. Conformational control of DNA target cleavage by CRISPR–Cas9. Nature. 2015;527(7576):110–3.
    Suknuntha K, Ishii Y, Tao L, Hu K, McIntosh BE, Yang D, et al. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells. Stem Cell Res. 2015;15(3):678–93.
    Sun N, Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng. 2014;111(5):1048–53.
    Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S, et al. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther. 2013;21(7):1424–31.
    Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, et al. Karyotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat. Biotechnol. Nature Research. 2011;29(4):313–4.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.
    Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, et al. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood. 2008;111(11):5298–306.
    Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31(10):928–33.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.
    Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T, et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol. 2009;182(11):6879–88.
    Todorova D, Kim J, Hamzeinejad S, He J, Brief Report XY. Immune microenvironment determines the immunogenicity of induced pluripotent stem cell derivatives. Stem Cells. 2016;34(2):510–5.
    Tulpule A, Kelley JM, Lensch MW, McPherson J, Park IH, Hartung O, et al. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell. 2013;12(6):727–36.
    U. S. Food and Drug Administration. FDA warns about stem cell claims [Internet]. FDA.gov. 2012 [cited 2016 Jul 13]. Available from: http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm286155.htm
    U. S. Food and Drug Administration. Facts about the current good manufacturing practices (CGMPs) [Internet]. FDA.gov. 2015 [cited 2016 Jul 13]. Available from: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/Manufacturing/ucm169105.htm
    Ugwu N, Awodu O, Bazuaye G, Okoye A. Red cell alloimmunization in multi-transfused patients with sickle cell anemia in Benin City, Nigeria. Niger J Clin Pract. 2015;18(4):522.
    University hospital Medical Information Network (UMIN) Center. UMIN-CTR Clinical Trial [Internet]. UMIN. 2016 [cited 2016 Sep 9]. Available from: https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013279&language=E
    Vanhee S, De Mulder K, Van Caeneghem Y, Verstichel G, Van Roy N, Menten B, et al. Vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica. 2015;100(2):157–66.
    Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S, et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell. 2013;12(1):31–6.
    Vodyanik MA. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105(2):617–26.
    Wang Y, Chou B-K, Dowey S, He C, Gerecht S, Cheng L. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 2013;11(3):1103–16.
    Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24(9):1526–33.
    Yazdanbakhsh K, Ware RE, Noizat-Pirenne F. Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management. Blood. 2012;120(3):528–37.
    Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci. 2009a Jun 16;106(24):9826–30.
    Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang Y-Y, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 2009b;114(27):5473–80.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.
    Zhao K, Liu Q. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation. J Hematol Oncol. 2016;9(1):46.