Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis (2018)

  • Authors:
  • USP affiliated authors: NAKAYA, HELDER TAKASHI IMOTO - FCF ; ALVES FILHO, JOSÉ CARLOS FARIAS - FMRP ; CUNHA, FERNANDO DE QUEIROZ - FMRP ; CUNHA NETO, EDECIO - FM ; SILVA, JOÃO SANTANA DA - FMRP ; CUNHA, THIAGO MATTAR - FMRP
  • USP Schools: FCF; FMRP; FMRP; FM; FMRP; FMRP
  • DOI: 10.1038/s41467-018-03986-3
  • Subjects: TRYPANOSOMA CRUZI; MIOCARDIOPATIAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41467-018-03986-3 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41467-018-03986-3 (Fonte: Unpaywall API)

    Título do periódico: Nature Communications

    ISSN: 2041-1723

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Evidência: oa journal (via doaj)
      • Licença: cc-by
      • Versão: publishedVersion
      • Tipo de hospedagem: publisher


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




    Informações sobre o Citescore
  • Título: Nature Communications

    ISSN: 2041-1723

    Citescore - 2017: 12.41

    SJR - 2017: 6.582

    SNIP - 2017: 2.912


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Maria C; LOPES, Carla D; CARDOZO, Lucas Esteves; et al. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nature Communications, London, v. 9, p. 1-14 art. 1513, 2018. Disponível em: < http://dx.doi.org/10.1038/s41467-018-03986-3 > DOI: 10.1038/s41467-018-03986-3.
    • APA

      Silva, M. C., Lopes, C. D., Cardozo, L. E., Gava, F. N., Lyroni, K., Dias, F. C., et al. (2018). Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nature Communications, 9, 1-14 art. 1513. doi:10.1038/s41467-018-03986-3
    • NLM

      Silva MC, Lopes CD, Cardozo LE, Gava FN, Lyroni K, Dias FC, Frade AF, Baron M, Nakaya HTI, Figueiredo F, Alves Filho JCF, Cunha F de Q, Tsatsanis C, Chevillard C, Cunha-Neto E, Hirsch E, Silva JS da, Cunha TM, Ferreira MD, Medina TS, Costa RS, Silva GK. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis [Internet]. Nature Communications. 2018 ; 9 1-14 art. 1513.Available from: http://dx.doi.org/10.1038/s41467-018-03986-3
    • Vancouver

      Silva MC, Lopes CD, Cardozo LE, Gava FN, Lyroni K, Dias FC, Frade AF, Baron M, Nakaya HTI, Figueiredo F, Alves Filho JCF, Cunha F de Q, Tsatsanis C, Chevillard C, Cunha-Neto E, Hirsch E, Silva JS da, Cunha TM, Ferreira MD, Medina TS, Costa RS, Silva GK. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis [Internet]. Nature Communications. 2018 ; 9 1-14 art. 1513.Available from: http://dx.doi.org/10.1038/s41467-018-03986-3

    Referências citadas na obra
    Rassi, A., Jr., Rassi, A. & Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am. 26, 275–291 (2012).
    Rogers, N. Bugging out over Chagas: bioluminescent protozoans and old drugs might help unravel kissing-bug disease. Nat. Med. 21, 1108–1110 (2015).
    Imai, K. et al. Mother-to-child transmission of congenital Chagas disease, Japan. Emerg. Infect. Dis. 20, 146–148 (2014).
    Imai, K. et al. Chronic Chagas disease with advanced cardiac complications in Japan: case report and literature review. Parasitol. Int. 64, 240–242 (2015).
    Bern, C., Montgomery, S. P., Katz, L., Caglioti, S. & Stramer, S. L. Chagas disease and the US blood supply. Curr. Opin. Infect. Dis. 21, 476–482 (2008).
    Basile, L. et al. Chagas disease in European countries: the challenge of a surveillance system. Euro. Surveill. 16, 19968 (2011).
    Coura, J. R. Chagas disease: what is known and what is needed—a background article. Mem. Inst. Oswaldo. Cruz 102, 113–122 (2007).
    Moncayo, A. & Ortiz Yanine, M. I. An update on Chagas disease (human American trypanosomiasis). Ann. Trop. Med. Parasitol. 100, 663–677 (2006).
    Rassi, A. Jr, Rassi, A. & Little, W. C. Chagas’ heart disease. Clin. Cardiol. 23, 883–889 (2000).
    Koberle, F. Chagas’ disease and Chagas’ syndromes: the pathology of American trypanosomiasis. Adv. Parasitol. 6, 63–116 (1968).
    Rossi, M. A. Microvascular changes as a cause of chronic cardiomyopathy in Chagas’ disease. Am. Heart J. 120, 233–236 (1990).
    Hazeki, K., Nigorikawa, K. & Hazeki, O. Role of phosphoinositide 3-kinase in innate immunity. Biol. Pharm. Bull. 30, 1617–1623 (2007).
    Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).
    Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).
    Silva, G. K. et al. Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1beta response and host resistance to Trypanosoma cruzi infection. J. Immunol. 191, 3373–3383 (2013).
    Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).
    Arranz, A. et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl Acad. Sci. USA 109, 9517–9522 (2012).
    Patrucco, E. et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).
    Rajappa, M. & Sharma, A. Biomarkers of cardiac injury: an update. Angiology 56, 677–691 (2005).
    Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail 4, 44–52 (2011).
    Kasner, M. et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 57, 977–985 (2011).
    van Dop, W. A. et al. The absence of functional PI3Kgamma prevents leukocyte recruitment and ameliorates DSS-induced colitis in mice. Immunol. Lett. 131, 33–39 (2010).
    Gruen, M. et al. Loss of phosphoinositide 3-kinase gamma decreases migration and activation of phagocytes but not T cell activation in antigen-induced arthritis. BMC Musculoskelet. Disord. 11, 63 (2010).
    Barber, D. F. et al. PI3Kgamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat. Med. 11, 933–935 (2005).
    Martin, E. L. et al. Phosphoinositide-3 kinase gamma activity contributes to sepsis and organ damage by altering neutrophil recruitment. Am. J. Respir. Crit. Care Med. 182, 762–773 (2010).
    Nogueira, L. G. et al. Myocardial gene expression of T-bet, GATA-3, Ror-gammat, FoxP3, and hallmark cytokines in chronic Chagas disease cardiomyopathy: an essentially unopposed TH1-type response. Mediat. Inflamm. 2014, 914326 (2014).
    Maya, J. D. et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 601–620 (2007).
    Rottenberg, M. E. et al. Differential susceptibilities of mice genomically deleted of CD4 and CD8 to infections with Trypanosoma cruzi or Trypanosoma brucei. Infect. Immun. 61, 5129–5133 (1993).
    Sun, J. & Tarleton, R. L. Predominance of CD8+T lymphocytes in the inflammatory lesions of mice with acute Trypanosoma cruzi infection. Am. J. Trop. Med. Hyg. 48, 161–169 (1993).
    Aliberti, J. C. et al. Interleukin-12 mediates resistance to Trypanosoma cruziin mice and is produced by murine macrophages in response to live trypomastigotes. Infect. Immun. 64, 1961–1967 (1996).
    Tarleton, R. L., Koller, B. H., Latour, A. & Postan, M. Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature 356, 338–340 (1992).
    Vespa, G. N., Cunha, F. Q. & Silva, J. S. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect. Immun. 62, 5177–5182 (1994).
    Holscher, C. et al. Defective nitric oxide effector functions lead to extreme susceptibility of Trypanosoma cruzi-infected mice deficient in gamma interferon receptor or inducible nitric oxide synthase. Infect. Immun. 66, 1208–1215 (1998).
    Mao, C. et al. Unequal contribution of Akt isoforms in the double-negative to double-positive thymocyte transition. J. Immunol. 178, 5443–5453 (2007).
    Todorov, A. G., Einicker-Lamas, M., de Castro, S. L., Oliveira, M. M. & Guilherme, A. Activation of host cell phosphatidylinositol 3-kinases by Trypanosoma cruzi infection. J. Biol. Chem. 275, 32182–32186 (2000).
    Wilkowsky, S. E., Barbieri, M. A., Stahl, P. & Isola, E. L. Trypanosoma cruzi: phosphatidylinositol 3-kinase and protein kinase B activation is associated with parasite invasion. Exp. Cell Res. 264, 211–218 (2001).
    Chuenkova, M. V. & PereiraPerrin, M. Trypanosoma cruzi targets Akt in host cells as an intracellular antiapoptotic strategy. Sci. Signal. 2, ra74 (2009).
    Camps, M. et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11, 936–943 (2005).
    Ndongson-Dongmo, B. et al. Phosphoinositide 3-kinase gamma controls inflammation-induced myocardial depression via sequential cAMP and iNOS signalling. Cardiovasc. Res. 108, 243–253 (2015).
    Roman-Campos, D. et al. Novel insights into the development of chagasic cardiomyopathy: role of PI3Kinase/NO axis. Int. J. Cardiol. 167, 3011–3020 (2013).
    Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).
    Higuchi, M. L. et al. The role of active myocarditis in the development of heart failure in chronic Chagas’ disease: a study based on endomyocardial biopsies. Clin. Cardiol. 10, 665–670 (1987).
    Sasaki, T. et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).
    Patrucco, E. et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).
    Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728–1731 (2001).
    Silva, L. H. P. & Nussenzweig, V. Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Fol Clin. Biol. 20, 191–207 (1953).
    Dutra, R. C. et al. Inhibitor of PI3Kgamma ameliorates TNBS-induced colitis in mice by affecting the functional activity of CD4+CD25+FoxP3+regulatory T cells. Br. J. Pharmacol. 163, 358–374 (2011).
    Cummings, K. L. & Tarleton, R. L. Rapid quantitation of Trypanosoma cruzi in host tissue by real-time PCR. Mol. Biochem. Parasitol. 129, 53–59 (2003).
    Marim, F. M., Silveira, T. N., Lima, D. S. Jr. & Zamboni, D. S. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS ONE 5, e15263 (2010).
    Guedes, P. M. et al. Nitric oxide donor trans-[RuCl([15]aneN)NO] as a possible therapeutic approach for Chagas’ disease. Br. J. Pharmacol. 160, 270–282 (2010).
    Daigneault, M., Preston, J. A., Marriott, H. M., Whyte, M. K. & Dockrell, D. H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 5, e8668 (2010).
    Green, L. C. et al. Nitrate biosynthesis in man. Proc. Natl Acad. Sci. USA 78, 7764–7768 (1981).