Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Use of classification algorithms in noise detection and elimination (2009)

  • Authors:
  • USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/978-3-642-02319-4_50
  • Subjects: APRENDIZADO COMPUTACIONAL; BIOINFORMÁTICA; RECONHECIMENTO DE PADRÕES
  • Keywords: Noise; Gene Expression and Classification
  • Language: Inglês
  • Imprenta:
  • Source:
  • Conference titles: International Conference on Hybrid Artificial Intelligence Systems - HAIS
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/978-3-642-02319-4_50 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/978-3-642-02319-4_50 (Fonte: Unpaywall API)

    Título do periódico: Hybrid Artificial Intelligence Systems

    ISSN: 0302-9743,1611-3349



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Lecture Notes in Computer Science

    ISSN: 0302-9743

    Citescore - 2017: 0.9

    SJR - 2017: 0.295

    SNIP - 2017: 0.655


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2884609-10PROD-2884609
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MIRANDA, André L. B; GARCIA, Luís Paulo F; CARVALHO, Andre Carlos Ponce de Leon Ferreira de; LORENA, Ana Carolina. Use of classification algorithms in noise detection and elimination. Lecture Notes in Artificial Intelligence[S.l: s.n.], 2009.Disponível em: DOI: 10.1007/978-3-642-02319-4_50.
    • APA

      Miranda, A. L. B., Garcia, L. P. F., Carvalho, A. C. P. de L. F. de, & Lorena, A. C. (2009). Use of classification algorithms in noise detection and elimination. Lecture Notes in Artificial Intelligence. Berlin: Springer. doi:10.1007/978-3-642-02319-4_50
    • NLM

      Miranda ALB, Garcia LPF, Carvalho ACP de LF de, Lorena AC. Use of classification algorithms in noise detection and elimination [Internet]. Lecture Notes in Artificial Intelligence. 2009 ; 5572 417-424.Available from: http://dx.doi.org/10.1007/978-3-642-02319-4_50
    • Vancouver

      Miranda ALB, Garcia LPF, Carvalho ACP de LF de, Lorena AC. Use of classification algorithms in noise detection and elimination [Internet]. Lecture Notes in Artificial Intelligence. 2009 ; 5572 417-424.Available from: http://dx.doi.org/10.1007/978-3-642-02319-4_50

    Referências citadas na obra
    Zhu, X., Wu, X.: Class noise vs. Attribute noise: A quantitative study of their impacts. Artificial Intelligence Review 22(3), 177–210 (2004)
    Van Hulse, J.D., Khoshgoftaar, T.M., Huang, H.: The pairwise attribute noise detection algorithm. Knowl. Inf. Syst. 11(2), 171–190 (2007)
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
    Noble, W.S.: Kernel Methods in Computational Biology. In: Support vector machines applications in computational biology, ch. 3, pp. 71–92. MIT Press, Cambridge (2004)
    Haykin, S.: Neural Network – A Compreensive foundation, 2nd edn. Prentice-Hall, New Jersey (1999)
    Breiman, L., Friedman, F., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth (1984)
    Verbaeten, S., Assche, A.V.: Ensemble Methods for noise elimination in Classification problems. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 317–325. Springer, Heidelberg (2003)
    Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22, 85–126 (2004)
    Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of Machine Learning Research 7, 1–30 (2006)
    Mack, D.H., Tom, E.Y., Mahadev, M., Dong, H., Mittman, M., Dee, S., Levine, A.J., Gingeras, T.R., Lockhart, D.J.: Biology of Tumors. In: Mihich, K., Croce, C. (eds.), pp. 123–131. Plenum, New York (1998)
    Brown, M., Grundy, W., Lin, D., Christianini, N., Sugnet, C., Haussler, D.: Support Vector Machines Classication of Microarray Gene Expression Data, Technical Report UCSC-CRL 99-09, Department of Computer Science, University California Santa Cruz, Santa Cruz, CA (1999)
    Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classication of tumors using gene expression data. Technical Report 576, Department of Statistics, UC Berkeley (2000)
    Yeoh, E.J., Ross, M.E., Shurtle, S.A., Williams, W.K., Patel, D., Mahfouz, R., Behm, F.G., Raimondi, S.C., Relling, M.V., Patel, A., Cheng, C., Campana, D., Wilkins, D., Zhou, X., Li, J., Liu, H., Pui, C.H., Evans, W.E., Naeve, C., Wong, L., Downing, J.R.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2), 133–143 (2002)
    Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Machine Learning 52(1-2), 91–118 (2003)