Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Transcriptional regulation of hydrocarbon efflux pump expression in bacteria (2018)

  • Authors:
  • USP affiliated authors: ROCHA, RAFAEL SILVA - FMRP ; GUAZZARONI, MARÍA EUGENIA - FFCLRP
  • USP Schools: FMRP; FFCLRP
  • DOI: 10.1007/978-3-319-50542-8_4
  • Subjects: TRANSCRIÇÃO GÊNICA; REGULAÇÃO BACTERIANA DA EXPRESSÃO GÊNICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/978-3-319-50542-8_4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/978-3-319-50542-8_4 (Fonte: Unpaywall API)

    Título do periódico: Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions

    ISSN:



      Não possui versão em Acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2885950pcd 2885950 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      WESTMANN, Cauã Antunes; ALVES, Luana de Fátima; BORELLI, Tiago Cabral; SILVA-ROCHA, Rafael; GUAZZARONI, Maria Eugenia. Transcriptional regulation of hydrocarbon efflux pump expression in bacteria. In: Cellular ecophysiology of microbe: hydrocarbon and lipid interactions[S.l: s.n.], 2018.Disponível em: DOI: 10.1007/978-3-319-50542-8_4.
    • APA

      Westmann, C. A., Alves, L. de F., Borelli, T. C., Silva-Rocha, R., & Guazzaroni, M. E. (2018). Transcriptional regulation of hydrocarbon efflux pump expression in bacteria. In Cellular ecophysiology of microbe: hydrocarbon and lipid interactions. Taipei: Springer. doi:10.1007/978-3-319-50542-8_4
    • NLM

      Westmann CA, Alves L de F, Borelli TC, Silva-Rocha R, Guazzaroni ME. Transcriptional regulation of hydrocarbon efflux pump expression in bacteria [Internet]. In: Cellular ecophysiology of microbe: hydrocarbon and lipid interactions. Taipei: Springer; 2018. Available from: http://dx.doi.org/10.1007/978-3-319-50542-8_4
    • Vancouver

      Westmann CA, Alves L de F, Borelli TC, Silva-Rocha R, Guazzaroni ME. Transcriptional regulation of hydrocarbon efflux pump expression in bacteria [Internet]. In: Cellular ecophysiology of microbe: hydrocarbon and lipid interactions. Taipei: Springer; 2018. Available from: http://dx.doi.org/10.1007/978-3-319-50542-8_4

    Referências citadas na obra
    Aires JR, Nikaido H (2005) Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. https://doi.org/10.1128/JB.187.6.1923
    Aires JR, Köhler T, Nikaido H (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents 43:2624–2628
    Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7:410–413
    Alguel Y, Meng C, Terán W et al (2007) Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J Mol Biol 369:829–840. https://doi.org/10.1016/j.jmb.2007.03.062
    Alguel Y, Lu D, Quade N et al (2010) Crystal structure of MexZ, a key repressor responsible for antibiotic resistance in Pseudomonas aeruginosa. J Struct Biol 172:305–310. https://doi.org/10.1016/j.jsb.2010.07.012
    Alnaseri H, Arsic B, Schneider JET et al (2015) Inducible expression of a resistance-nodulation-division-type efflux pump in Staphylococcus aureus provides resistance to linoleic and arachidonic acids. J Bacteriol 197:1893–1905. https://doi.org/10.1128/JB.02607-14
    Alvarez-Ortega C, Olivares J, Martínez JL (2013) RND multidrug efflux pumps: what are they good for? Front Microbiol. https://doi.org/10.3389/fmicb.2013.00007
    Andersen J, Delihas N (1990) micF RNA binds to the 5′ end of ompF mRNA and to a protein from Escherichia coli. Biochemistry 29:9249–9256. https://doi.org/10.1021/bi00491a020
    Anes J, McCusker MP, Fanning S, Martins M (2015) The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00587
    Bachhawat P, Stock AM (2007) Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J Bacteriol 189:5987–5995. https://doi.org/10.1128/JB.00049-07
    Bailey AM, Ivens A, Kingsley R et al (2010) RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica Serovar Typhimurium. J Bacteriol 192:1607–1616. https://doi.org/10.1128/JB.01517-09
    Balasubramanian D, Schneper L, Merighi M et al (2012) The regulatory repertoire of Pseudomonas aeruginosa AmpC β-lactamase regulator AmpR includes virulence genes. PLoS One. https://doi.org/10.1371/journal.pone.0034067
    Baucheron S, Coste F, Canepa S et al (2012) Binding of the RamR repressor to wild-type and mutated promoters of the ramA gene involved in efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 56:942–948. https://doi.org/10.1128/AAC.05444-21
    Baucheron S, Nishino K, Monchaux I et al (2014) Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 69:2400–2406. https://doi.org/10.1093/jac/dku140
    Blair JMA, Smith HE, Ricci V et al (2015) Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemother 70:424–431. https://doi.org/10.1093/jac/dku380
    Brooun A, Tomashek JJ, Lewis K (1999) Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J Bacteriol 181:5131–5133
    Castang S, Dove SL (2010) High-order oligomerization is required for the function of the H-NS family member MvaT in Pseudomonas aeruginosa. Mol Microbiol 78:916–931. https://doi.org/10.1111/j.1365-2958.2010.07378.x
    Chambers JR, Liao J, Schurr MJ, Sauer K (2014) BrlR from pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol Microbiol 92:471–487. https://doi.org/10.1111/mmi.12562
    Chen H, Hu J, Chen PR et al (2008) The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A 105:13586–13591. https://doi.org/10.1073/pnas.0803391105
    Chen W, Wang D, Zhou W et al (2016) Novobiocin binding to NalD induces the expression of the MexAB-OprM pump in Pseudomonas aeruginosa. Mol Microbiol. https://doi.org/10.1111/mmi.13346
    Chuanchuen R, Narasaki CT, Schweizer HP (2002) The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 184:5036–5044. https://doi.org/10.1128/JB.184.18.5036-5044.2002
    Chuanchuen R, Gaynor JB, Karkhoff-Schweizer R, Schweizer HP (2005) Molecular characterization of MexL, the transcriptional repressor of the mexJK multidrug efflux operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:1844–1851. https://doi.org/10.1128/AAC.49.5.1844-2851.2005
    Dagley S (1971) Catabolism of aromatic compounds by micro-organisms. Adv Microb Physiol 6:1–46. https://doi.org/10.1016/S0065-2911(08)60066-1
    Das D, Xu QS, Lee JY et al (2007) Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. J Struct Biol 158:494–502. https://doi.org/10.1016/j.jsb.2006.12.004
    Delihas N, Forst S (2001) MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 313:1–12
    Ding P, McFarland KA, Jin S et al (2015) A novel AT-rich DNA recognition mechanism for bacterial xenogeneic silencer MvaT. PLoS Pathog 11:e1004967. https://doi.org/10.1371/journal.ppat.1004967
    Dorel C, Lejeune P, Rodrigue A (2006) The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157:306–314. https://doi.org/10.1016/j.resmic.2005.12.003
    Doshi R, Nguyen T, Chang G (2013) Transporter-mediated biofuel secretion. Proc Natl Acad Sci U S A 110:7642–7647. https://doi.org/10.1073/pnas.1301358110
    Dreier J, Ruggerone P (2015) Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00660
    Duque E, Segura A, Mosqueda G, Ramos JL (2001) Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida. Mol Microbiol 39:1100–1106. https://doi.org/10.1046/j.1365-2958.2001.02310.x
    Duval V, Lister IM (2013) MarA, SoxS and Rob of Escherichia coli – global regulators of multidrug resistance, virulence and stress response. Int J Biotechnol Wellness Ind 2:101–124. https://doi.org/10.6000/1927-3037.2013.02.03.2
    Eaves DJ, Ricci V, Piddock LJV (2004) Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents. https://doi.org/10.1128/AAC.48.4.1145
    Eguchi Y, Utsumi R (2014) Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. J Bacteriol 196:3140–3149. https://doi.org/10.1128/JB.01742-14
    Eguchi Y, Oshima T, Mori H et al (2003) Transcriptional regulation of drug efflux genes by EvgAS, two-component system in Escherichia coli. Microbiology 149:2819–2828. https://doi.org/10.1099/mic.0.26460-0
    Eguchi Y, Ishii E, Hata K, Utsumi R (2011) Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J Bacteriol 193:1222–1228. https://doi.org/10.1128/JB.01124-20
    Elkins CA, Nikaido H (2002) Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol 184:6490–6498. https://doi.org/10.1128/JB.184.23.6490-6499.2002
    Esposito D, Petrovic A, Harris R et al (2002) H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J Mol Biol 324:841–850. https://doi.org/10.1016/S0022-2836(02)01141-5
    Fargier E, Mac AM, Mooij MJ et al (2012) Mext functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 194:3502–3511. https://doi.org/10.1128/JB.06632-11
    Fernandes P, Sommer Ferreira B, Sampaio Cabral JM (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216. https://doi.org/10.1016/S0924-8579(03)00209-7
    Fernández L, Gooderham WJ, Bains M et al (2010) Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother 54:3372–3382. https://doi.org/10.1128/AAC.00242-10
    Fernandez-Escamilla AM, Fernandez-Ballester G, Morel B et al (2015) Molecular binding mechanism of TtgR repressor to antibiotics and antimicrobials. PLoS One 10:e0138469. https://doi.org/10.1371/journal.pone.0138469
    Fetar H, Gilmour C, Klinoski R et al (2011) mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514. https://doi.org/10.1128/AAC.00830-10
    Fillet S, Daniels C, Pini C et al (2012) Transcriptional control of the main aromatic hydrocarbon efflux pump in Pseudomonas. Environ Microbiol Rep 4:158–167
    Fleischer R, Heermann R, Jung K, Hunke S (2007) Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli. J Biol Chem 282:8583–8593. https://doi.org/10.1074/jbc.M605785200
    Fraud S, Campigotto AJ, Chen Z, Poole K (2008) MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 52:4478–4482. https://doi.org/10.1128/AAC.01072-08
    Fukuda H, Hosaka M, Iyobe S et al (1995) nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:790–792. https://doi.org/10.1128/AAC.39.3.790
    García V, Godoy P, Daniels C et al (2010) Functional analysis of new transporters involved in stress tolerance in Pseudomonas putida DOT-T1E. Environ Microbiol Rep 2:389–395. https://doi.org/10.1111/j.1758-2229.2009.00093.x
    Girvan MS, Campbell CD, Killham K et al (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313. https://doi.org/10.1111/j.1462-2920.2004.00695.x
    Griffith KL, Shah IM, Wolf RE (2004) Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol Microbiol 51:1801–1816. https://doi.org/10.1046/j.1365-2958.2003.03952.x
    Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701 . https://doi.org/10.1128/MMBR.66.4.671 table of contents
    Gu R, Li M, Su CC et al (2008) Conformational change of the AcrR regulator reveals a possible mechanism of induction. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:584–588. https://doi.org/10.1107/S1744309108016035
    Guazzaroni ME, Terán W, Zhang X et al (2004) TtgV bound to a complex operator site represses transcription of the promoter for the multidrug and solvent extrusion TtgGHI pump. J Bacteriol 186:2921–2927. https://doi.org/10.1128/JB.186.10.2921-2927.2004
    Guazzaroni ME, Krell T, Felipe A et al (2005) The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. J Biol Chem 280:20887–20893. https://doi.org/10.1074/jbc.M500783200
    Guazzaroni M-E, Gallegos M-T, Ramos JL, Krell T (2007a) Different modes of binding of mono- and biaromatic effectors to the transcriptional regulator TTGV: role in differential derepression from its cognate operator. J Biol Chem 282:16308–16316. https://doi.org/10.1074/jbc.M610032200
    Guazzaroni ME, Krell T, Gutiérrez del Arroyo P et al (2007b) The transcriptional repressor TtgV recognizes a complex operator as a tetramer and induces convex DNA bending. J Mol Biol 369:927–939. https://doi.org/10.1016/j.jmb.2007.04.022
    Gupta K, Marques CNH, Petrova OE, Sauer K (2013) Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid sagS. J Bacteriol 195:4975–4987. https://doi.org/10.1128/JB.00732-13
    Hay T, Fraud S, Lau CHF et al (2013) Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One. https://doi.org/10.1371/journal.pone.0056858
    Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852
    Hirai K, Suzue S, Irikura T et al (1987) Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 31:582–586. https://doi.org/10.1128/AAC.31.4.582
    Hirakawa H, Takumi-Kobayashi A, Theisen U et al (2008) AcrS/EnvR represses expression of the acrAB multidrug efflux genes in Escherichia coli. J Bacteriol 190:6276–6279. https://doi.org/10.1128/JB.00190-08
    Inoue A, Yamamoto M, Horikoshi K (1991) Pseudomonas putida which can grow in the presence of toluene. Appl Environ Microbiol 57:1560–1562
    Isken S, De Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058
    Jones CM, Hernández Lozada NJ, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99:9381–9393. https://doi.org/10.1007/s00253-015-6963-9
    Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700
    Khalil AS, Lu TK, Bashor CJ et al (2012) A synthetic biology framework for programming eukaryotic transcription functions. Cell 150:647–658. https://doi.org/10.1016/j.cell.2012.05.045
    Kim K, Lee S, Lee K, Lim D (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696
    Kim T, Duong T, Wu CA et al (2014) Structural insights into the molecular mechanism of Escherichia coli SdiA, a quorum-sensing receptor. Acta Crystallogr Sect D Biol Crystallogr 70:694–707. https://doi.org/10.1107/S1399004713032355
    Köhler T, Michéa-Hamzehpour M, Henze U et al (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354. https://doi.org/10.1046/j.1365-2958.1997.2281594.x
    Köhler T, Epp SF, Curty LK, Pechère JC (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305
    Koutsolioutsou A, Martins EA, White DG et al (2001) A soxRS -constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar A soxRS -constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica) Serovar Typhimu. Antimicrob Agents. https://doi.org/10.1128/AAC.45.1.38
    Kwon HJ, Bennik MH, Demple B, Ellenberger T (2000) Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 7:424–430. https://doi.org/10.1038/75213
    Lau CHF, Krahn T, Gilmour C et al (2015) AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiol Open 4:121–135. https://doi.org/10.1002/mbo3.226
    Lawler AJ, Ricci V, Busby SJW, Piddock LJV (2013) Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 68:1551–1557. https://doi.org/10.1093/jac/dkt069
    Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2012) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144. https://doi.org/10.1128/JB.01477-12
    Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204. https://doi.org/10.2165/11317030-000000000-00000
    Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. https://doi.org/10.2165/11317030-000000000-00000
    Li XZ, Nikaido H, Poole K (1995) Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953. https://doi.org/10.1128/AAC.39.9.1948
    Li XZ, Barré N, Poole K (2000) Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 46:885–893. https://doi.org/10.1128/JB.182.5.1410-1414.2000
    Li M, Gu R, Su CC et al (2007) Crystal structure of the tanscriptional regulator AcrR from Escherichia coli. J Mol Biol 374:591–603. https://doi.org/10.1016/j.jmb.2007.09.064
    Li XZ, Plesiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. https://doi.org/10.1128/CMR.00117-14
    Liao J, Schurr MJ, Sauera K (2013) The merR-like regulator brlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195:3352–3363. https://doi.org/10.1128/JB.00318-13
    Lim D, Poole K, Strynadka NCJ (2002) Crystal structure of the MexR repressor of themexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem 277:29253–29259
    Lin J, Akiba M, Sahin O, Zhang Q (2005) CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 49:1067–1075. https://doi.org/10.1128/AAC.49.3.1067-1075.2005
    Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610. https://doi.org/10.1128/CMR.00040-09
    Ma D, Cook DN, Alberti M et al (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313
    Ma D, Cook DN, Alberti M et al (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55. https://doi.org/10.1111/j.1365-2958.1995.tb02390.x
    Ma D, Alberti M, Lynch C et al (1996) The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol 19:101–112. https://doi.org/10.1046/j.1365-2958.1996.357881.x
    Martin RG, Rosner JL (2011) Promoter discrimination at class I mara regulon promoters mediated by glutamic acid 89 of the mara transcriptional activator of escherichia coli. J Bacteriol 193:506–515. https://doi.org/10.1128/JB.00360-10
    Martin RG, Gillette WK, Rhee S, Rosner JL (1999) Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 34:431–441. https://doi.org/10.1046/j.1365-2958.1999.01599.x
    Martinez JL, Sánchez MB, Martínez-Solano L et al (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449
    Maseda H, Sawada I, Saito K et al (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004(48):1320–1328. https://doi.org/10.1128/AAC.48.4.1320
    Masuda N, Sakagawa E, Ohya S (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327. https://doi.org/10.1128/AAC.44.12.3322-3327.2000 .Updated
    Mine T, Morita Y, Kataoka A et al (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417
    Morita Y, Kimura N, Mima T et al (2001) Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Genet Appl Microbiol 47:27–32. https://doi.org/10.2323/jgam.47.27
    Morita Y, Cao L, Gould VC et al (2006) nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Bacteriol 188:8649–8654. https://doi.org/10.1128/JB.01342-06
    Mosqueda G, Ramos JL (2000) A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol 182:937–943. https://doi.org/10.1128/JB.182.4.937-943.2000
    Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593. https://doi.org/10.5940/jcrsj.45.256
    Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. https://doi.org/10.2142/biophys.47.309
    Nichols RJ, Sen S, Choo YJ et al (2011) Phenotypic landscape of a bacterial cell. Cell 144:143–156. https://doi.org/10.1016/j.cell.2010.11.052
    Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923
    Nikaido H (2011) Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol Relat Areas Mol Biol 77:1–60. https://doi.org/10.1111/j.1365-2958.2011.07544.x .Chlorinated
    Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253. https://doi.org/10.1074/jbc.M804544200
    Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812. https://doi.org/10.1128/JB.183.20.5803-5812.2001
    Nishino K, Yamada J, Hirakawa H et al (2003) Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to β-lactams. Antimicrob Agents Chemother 47:3030–3033. https://doi.org/10.1128/AAC.47.9.3030-3033.2003
    Nishino K, Yamasaki S, Hayashi-Nishino M, Yamaguchi A (2011) Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli. J Antimicrob Chemother 66:291–296. https://doi.org/10.1093/jac/dkq420
    Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308
    Perraud AL, Rippe K, Bantscheff M et al (2000) Dimerization of signalling modules of the EvgAS and BvgAS phosphorelay systems. Biochim Biophys Acta Protein Struct Mol Enzymol 1478:341–354. https://doi.org/10.1016/S0167-4838(00)00052-2
    Piddock L (2014) Understanding the basis of antibiotic resistance: QConnect results. Microbiol Soc. http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.082412-0 . Accessed 30 Jun 2016
    Poole K, Krebes K, McNally C, Shadi N (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372
    Poole K, Gotoh N, Tsujimoto H et al (1996a) Overexpression of the mexC-mexD-oprJ efflux operon in nfxB type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–725. https://doi.org/10.1046/j.1365-2958.1996.281397.x
    Poole K, Tetro K, Zhao Q et al (1996b) Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother 40:2021–2028
    Pos KM (2009) Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794:782–793. https://doi.org/10.1016/j.bbapap.2008.12.015
    Purssell A, Poole K (2013) Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology 159:2058–2073. https://doi.org/10.1099/mic.0.069286-0
    Purssell A, Fruci M, Mikalauskas A et al (2015) EsrC, an envelope stress-regulated repressor of the mexCD-oprJ multidrug efflux operon in Pseudomonas aeruginosa. Environ Microbiol 17:186–198. https://doi.org/10.1111/1462-2920.12602
    Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693. https://doi.org/10.1128/MMBR.64.4.672-693.2000
    Rahmati S, Yang S, Davidson AL, Zechiedrich EL (2002) Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 43:677–685. https://doi.org/10.1046/j.1365-2958.2002.02773.x
    Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916
    Ramos JL, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT- T1E. J Bacteriol 180:3323–3329 doi: 00219193/98/$04.00+0
    Ramos JL, Duque E, Gallegos MT et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768. https://doi.org/10.1146/annurev.micro.56.012302.161038
    Ramos JL, Cuenca MS, Molina-Santiago C et al (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566. https://doi.org/10.1093/femsre/fuv006
    Randall LP, Woodward MJ (2001) Multiple antibiotic resistance (mar) locus in Salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol 67:1190–1197. https://doi.org/10.1128/AEM.67.3.1190-1197.2001
    Rhee S, Martin RG, Rosner JL, Davies DR (1998) A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci U S A 95:10413–10418. https://doi.org/10.1073/pnas.95.18.10413
    Rodríguez-Herva JJ, García V, Hurtado A et al (2007) The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 9:1550–1561. https://doi.org/10.1111/j.1462-2920.2007.01276.x
    Rojas A, Duque E, Mosqueda G et al (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973. https://doi.org/10.1128/JB.183.13.3967-3973.2001
    Rojas A, Segura A, Guazzaroni ME et al (2003) In vivo and in vitro evidence that TtgV is the specific regulator of the TtgGHI multidrug and solvent efflux pump of Pseudomonas putida. J Bacteriol 185:4755–4763. https://doi.org/10.1128/JB.185.16.4755-4763.2003
    Rosenberg EY, Ma D, Nikaido H (2000) AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 182:1754–1756. https://doi.org/10.1128/JB.182.6.1754-2756.2000
    Rosner JL, Martin RG (2013) Reduction of cellular stress by TolC-dependent efflux pumps in Escherichia coli indicated by baeSR and CpxARP activation of spy in efflux mutants. J Bacteriol 195:1042–1050. https://doi.org/10.1128/JB.01996-12
    Saier MH, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213. https://doi.org/10.1006/scdb.2000.0246
    Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268
    Schweizer HP (2003) Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2:48–62 [pii] S01
    Segura A, Hurtado A, Rivera B, Lazaroaie MM (2008) Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solvent-tolerance properties. J Appl Microbiol 104:1408–1416. https://doi.org/10.1111/j.1365-2672.2007.03666.x
    Segura A, Molina L, Fillet S et al (2012) Solvent tolerance in gram-negative bacteria. Curr Opin Biotechnol 23:415–421. https://doi.org/10.1016/j.copbio.2011.11.015
    Shiba T, Ishiguro K, Takemoto N et al (1995) Purification and characterization of the Pseudomonas aeruginosa NfxB protein, the negative regulator of the nfxB gene. J Bacteriol 177:5872–5877
    Shindo H, Iwaki T, Ieda R et al (1995) Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett 360:125–131. https://doi.org/10.1016/0014-5793(95)00079-O
    Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222
    Sivaneson M, Mikkelsen H, Ventre I et al (2011) Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression. Mol Microbiol 79:1353–1366. https://doi.org/10.1111/j.1365-2958.2010.07527.x
    Sobel ML, Neshat S, Poole K (2005) Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187:1246–1253. https://doi.org/10.1128/JB.187.4.1246-1253.2005
    Starr LM, Fruci M, Poole K (2012) Pentachlorophenol induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS One. https://doi.org/10.1371/journal.pone.0032684
    Sulavik MC, Gambino LF, Miller PF (1995) The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol Med 1:436–446
    Sun Y, Dai M, Hao H et al (2011) The role of RamA on the development of ciprofloxacin resistance in Salmonella enterica serovar Typhimurium. PLoS One. https://doi.org/10.1371/journal.pone.0023471
    Tanaka T, Horii T, Shibayama K et al (1997) RobA-induced multiple antibiotic resistance largely depends on the activation of the AcrAB efflux. Microbiol Immunol 41:697–702
    Terán W, Felipe A, Segura A et al (2003) Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrob Agents Chemother 47:3067–3072. https://doi.org/10.1128/AAC.47.10.3067-3072.2003
    Terán W, Krell T, Ramos JL, Gallegos MT (2006) Effector-repressor interactions, binding of a single effector molecule to the operator-bound TtgR homodimer mediates derepression. J Biol Chem 281:7102–7109. https://doi.org/10.1074/jbc.M511095200
    Terán W, Felipe A, Fillet S et al (2007) Complexity in efflux pump control: cross-regulation by the paralogues TtgV and TtgT. Mol Microbiol 66:1416–1428. https://doi.org/10.1111/j.1365-2958.2007.06004.x
    Truong-Bolduc QC, Villet RA, Estabrooks ZA, Hooper DC (2014) Native efflux pumps contribute resistance to antimicrobials of skin and the ability of staphylococcus aureus to colonize skin. J Infect Dis 209:1485–1493. https://doi.org/10.1093/infdis/jit660
    Uwate M, ki IY, Shirai A et al (2013) Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Microbiol Immunol 57:263–272. https://doi.org/10.1111/1348-0421.12032
    Vadlamani G, Thomas MD, Patel TR et al (2015) The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the d-Ala-d-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. J Biol Chem 290:2630–2643. https://doi.org/10.1074/jbc.M114.618199
    Vallet I, Diggle SP, Stacey RE et al (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890. https://doi.org/10.1128/JB.186.9.2880-2890.2004
    Wang D, Seeve C, Pierson LS, Pierson EA (2013) Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics 14:618. https://doi.org/10.1186/1471-2164-24-618
    White DG, Goldman JD, Demple B, Levy SB (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 179:6122–6126
    Wong K, Ma J, Rothnie A et al (2014) Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem Sci 39:8–16
    Yamasaki S, Nikaido E, Nakashima R et al (2013) The crystal structure of multidrug-resistance regulator RamR with multiple drugs. Nat Commun 4:2078. https://doi.org/10.1038/ncomms3078
    Yoneyama H, Ocaktan A, Tsuda M, Nakae T (1997) The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. Biochem Biophys Res Commun 233:611–618. https://doi.org/10.1006/bbrc.1997.6506
    Zhang A, Rosner JL, Martin RG (2008) Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli. Mol Microbiol 69:1450–1455. https://doi.org/10.1111/j.1365-2958.2008.06371.x
    Zheng J, Cui S, Meng J (2009) Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium. J Antimicrob Chemother 63:95–102. https://doi.org/10.1093/jac/dkn448
    Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946