Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt (2018)

  • Authors:
  • USP affiliated authors: SILVA, MARCELO DE ASSUMPCAO PEREIRA DA - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s10853-018-2325-1
  • Subjects: FILMES FINOS; TRANSISTORES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10853-018-2325-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s10853-018-2325-1 (Fonte: Unpaywall API)

    Título do periódico: Journal of Materials Science

    ISSN: 0022-2461,1573-4803



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Materials Science

    ISSN: 0022-2461

    Citescore - 2017: 2.83

    SJR - 2017: 0.807

    SNIP - 2017: 1.064


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89027434PROD027434
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MIYAZAKI, Celina M.; MARIA, Marco A. E.; BORGES, Daiane Damasceno; et al. Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt. Journal of Materials Science, New York, Springer, v. 53, n. 14, p. 10049-10058, 2018. Disponível em: < http://dx.doi.org/10.1007/s10853-018-2325-1 > DOI: 10.1007/s10853-018-2325-1.
    • APA

      Miyazaki, C. M., Maria, M. A. E., Borges, D. D., Woellner, C. F., Brunetto, G., Fonseca, A. F., et al. (2018). Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt. Journal of Materials Science, 53( 14), 10049-10058. doi:10.1007/s10853-018-2325-1
    • NLM

      Miyazaki CM, Maria MAE, Borges DD, Woellner CF, Brunetto G, Fonseca AF, Constantino CJL, Silva M de AP da, Siervo A de, Galvao DS, Riul Jr. A. Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt [Internet]. Journal of Materials Science. 2018 ; 53( 14): 10049-10058.Available from: http://dx.doi.org/10.1007/s10853-018-2325-1
    • Vancouver

      Miyazaki CM, Maria MAE, Borges DD, Woellner CF, Brunetto G, Fonseca AF, Constantino CJL, Silva M de AP da, Siervo A de, Galvao DS, Riul Jr. A. Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt [Internet]. Journal of Materials Science. 2018 ; 53( 14): 10049-10058.Available from: http://dx.doi.org/10.1007/s10853-018-2325-1

    Referências citadas na obra
    Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sour 196:4873–4885
    Cai H, Li J, Xu X et al (2017) Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells. J Alloys Compd 697:132–137
    Liang B, Guo X, Fang L et al (2015) Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface. Electrochem Commun 50:1–5
    Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036
    Gupta V, Chaudhary N, Srivastava R et al (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960–9963
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622
    Kholmanov IN, Magnuson CW, Piner R et al (2015) Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater 27:3053–3059
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
    Jang J, Son M, Chung S et al (2015) Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci Rep 5:17955
    Shao J-J, Lv W, Yang Q-H (2014) Self-assembly of graphene oxide at interfaces. Adv Mater 26:5586–5612
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339
    Wang G, Shen X, Wang B et al (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364
    Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228
    Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024
    Richardson JJ, Bjornmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:2491–2491
    Hu J, He B, Lu J et al (2012) Facile preparation of Pt/polyallylamine/reduced graphene oxide composites and their application in the electrochemical catalysis on methanol oxidation. Int J Electrochem Sci 7:10094–10107
    Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5:8848–8868
    Cohen-Tanugi D, Lin L-C, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16:1027–1033
    Long Y, Wang K, Xiang G et al (2017) Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Adv Mater 29:1606093–1606097
    Bo X, Zhou M, Guo L (2017) Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 89(1):167–186
    Mascagni DBT, Miyazaki CM, da Cruz NC et al (2016) Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection. Mater Sci Eng C 68:739–745. https://doi.org/10.1016/j.msec.2016.06.001
    Hsiao S-T, Ma C-CM, Liao W-H et al (2014) Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl Mater Interfaces 6:10667–10678
    Lee DW, Hong T-K, Kang D et al (2011) Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J Mater Chem 21:3438
    Zou J, Kim F (2014) Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat Commun 5:5254
    Liu Y, Liu Y, Feng H et al (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68
    Marmisollé WA, Azzaroni O (2016) Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale 8:9890–9918
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237
    Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 2:831–835
    Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778. https://doi.org/10.1021/cm981085u
    Stankovich S, Piner RD, Chen X et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155
    Girotto EM, Santos IA (2002) Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente. Quím Nova 25:639
    Bagri A, Mattevi C, Acik M et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240
    Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690
    Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697
    Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643
    Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935
    Carrillo J-MY, Dobrynin AV (2010) Detailed molecular dynamics simulations of a model NaPSS in water. J Phys Chem B 114:9391–9399
    Jiao S, Xu Z (2015) Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. ACS Appl Mater Interf 7:9052–9059
    Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamic. J Comput Phys 117:1–19
    Khanra P, Kuila T, Kim NH et al (2012) Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem Eng J 183:526–533
    Liu Y, Gao L, Sun J et al (2009) Stable nafion-functionalized graphene dispersions for transparent conducting films. Nanotechnology 20:465605
    Jiang G, Baba A, Advincula R (2007) Nanopatterning and fabrication of memory devices from layer-by-layer poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate) ultrathin films. Langmuir 23:817–825
    Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276
    Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401
    Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563
    Yang D, Velamakanni A, Bozoklu G et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152
    Pham VH, Cuong TV, Hur SH et al (2010) Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48:1945–1951
    Rani A, Oh KA, Koo H et al (2011) Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly. Appl Surf Sci 257:4982–4989
    Wang S, Yu D, Dai L et al (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209
    Zhang Y, Hu W, Li B et al (2011) Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process. Nanotechnology 22:345601
    Lu J, Do I, Fukushima H et al (2010) Stable aqueous suspension and self-assembly of graphite nanoplatelets coated with various polyelectrolytes. J Nanomater 2010:11
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682
    He P, Derby B (2017) Inkjet printing ultra-large graphene oxide flakes. 2D Mater 4:021021
    Gross MA, Sales MJA, Soler MAG et al (2014) Reduced graphene oxide multilayers for gas and liquid phases chemical sensing. RSC Adv 4:17917–17924
    Zheng Q, Kim J-K (2015) Graphene for transparent conductors—synthesis properties. Springer, New York
    Kotov NA, Dékány I, Fendler JH (1996) Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8:637–641
    Kim Y-K, Min D-H (2009) Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir 25:11302–11306
    Jimenez MJM, Oliveira RF, Almeida TP et al (2017) Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films. Nanotechnology 28:495711