Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite (2018)

  • Authors:
  • USP affiliated authors: CARVALHO, FLAVIO MACHADO DE SOUZA - IGC
  • USP Schools: IGC
  • DOI: 10.1007/s12649-018-0342-6
  • Subjects: ALUMÍNIO; POZOLANAS; CARBONATAÇÃO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12649-018-0342-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12649-018-0342-6 (Fonte: Unpaywall API)

    Título do periódico: Waste and Biomass Valorization

    ISSN: 1877-2641,1877-265X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Waste and Biomass Valorization

    ISSN: 1877-2641

    Citescore - 2017: 1.66

    SJR - 2017: 0.434

    SNIP - 2017: 0.681


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BRAZ, Inara Guglielmetti; SHINZATO, Mirian Chieko; MONTANEIRO, Tarcísio José; ALMEIDA, Thelma Miranda de; CARVALHO, Flavio Machado de Souza. Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite. Waste and Biomass Valorization[S.l.], Springer Nature, n. , p. , 2018. Disponível em: < http://dx.doi.org/10.1007/s12649-018-0342-6 > DOI: 10.1007/s12649-018-0342-6.
    • APA

      Braz, I. G., Shinzato, M. C., Montaneiro, T. J., Almeida, T. M. de, & Carvalho, F. M. de S. (2018). Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite. Waste and Biomass Valorization, ( ), . doi:10.1007/s12649-018-0342-6
    • NLM

      Braz IG, Shinzato MC, Montaneiro TJ, Almeida TM de, Carvalho FM de S. Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite [Internet]. Waste and Biomass Valorization. 2018 ;( ): .Available from: http://dx.doi.org/10.1007/s12649-018-0342-6
    • Vancouver

      Braz IG, Shinzato MC, Montaneiro TJ, Almeida TM de, Carvalho FM de S. Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite [Internet]. Waste and Biomass Valorization. 2018 ;( ): .Available from: http://dx.doi.org/10.1007/s12649-018-0342-6

    Referências citadas na obra
    Associação Brasileira do Alumínio: Relatório de sustentabilidade - reciclagem. Associação Brasileira do Alumínio, São Paulo (2012)
    International Aluminum Institute: Global Aluminium Recycling: A Cornerstone of Sustainable Development. International Aluminum Institute, London (2013)
    Associação Brasileira do Alumínio: Anuário Estatístico 2015. Associação Brasileira do Alumínio, São Paulo (2015)
    Shinzato, M.C., Hypolito, R.: Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Manag. (2005). https://doi.org/10.1016/j.wasman.2004.08.005
    Shinzato, M.C., Hypolito, R.: Effect of disposal of aluminum recycling waste in soil and water bodies. Environ. Earth Sci. (2016). https://doi.org/10.1007/s12665-016-5438-3
    Gonzalo-Delgado, L., López-Delgado, A., López, F.A., Alguacil, F.J., López-Andrés, S.: Recycling of hazardous waste from tertiary aluminium industry in a value-added material. Waste Manag. Res. 29, 127–134 (2011). https://doi.org/10.1177/0734242X10378330
    El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Recovery of high surface area alumina from aluminum dross tailings. J. Chem. Technol. Biotechnol. 75, 394 (2000)
    El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Surface composition, charge and texture of active alumina powders recovered from aluminum dross tailings chemical waste. Powder Technol. 132, 137–144 (2003). https://doi.org/10.1016/S0032-5910(03)00047-0
    Associação Brasileira de Normas Técnicas: NBR 12653: Materiais pozolânicos - especificação. ABNT, Rio de Janeiro (2012)
    Kontori, E., Perraki, T., Tsivilis, S., Kakali, G.: Zeolite blended cements: evaluation of their hydration rate by means of thermal analysis. J. Therm. Anal. Calorim. 96, 993–998 (2009). https://doi.org/10.1007/s10973-009-0056-x
    Garbev, K., Black, L., Beuchle, G., Stemmermann, P.: Inorganic polymers in cement based materials. Wasser Geotechnol. 1, 19–30 (2002)
    Mertens, G., Snellings, R., Van Balen, K., Bicer-Simsir, B., Verlooy, P., Elsen, J.: Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 39, 233–240 (2009). https://doi.org/10.1016/j.cemconres.2008.11.008
    Chusilp, N., Jaturapitakkul, C., Kiattikomol, K.: Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 23, 3352–3358 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.030
    Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M., Fairbairn, E.D.M.R.: Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115 (2009). https://doi.org/10.1016/j.cemconres.2008.11.005
    Fairbairn, E.M.R., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D., Silvoso, M.M.: Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871 (2010). https://doi.org/10.1016/j.jenvman.2010.04.008
    Frías, M., Villar, E., Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496 (2011). https://doi.org/10.1016/j.cemconcomp.2011.02.003
    Rukzon, S., Chindaprasirt, P.: Utilization of bagasse ash in high-strength concrete. Mater. Des. 34, 45–50 (2012). https://doi.org/10.1016/j.matdes.2011.07.045
    FIESP/CIESP: Ampliação da oferta de energia através da biomassa do Bagaço da cana-de- açúcar. FIESP/CIESP, São Paulo (2001)
    Companhia Nacional de Abastecimento: Acompanhamento da safra brasileira de cana-de-açúcar: safra 2017/18 - primeiro levantamento. CONAB, Brasília (2017)
    Perraki, T., Kakali, G., Kontoleon, F.: The effect of natural zeolites on the early hydration of Portland cement. Microporous Mesoporous Mater. 61, 205–212 (2003). https://doi.org/10.1016/S1387-1811(03)00369-X
    Zhang, Z., Guo, J., Liang, C.: Contribution of zeolite to the hydration of cement. In: Mumpton, F.A. (ed.) Proceedings of the 4th International Conference on Occurrence, Properties, Utilization of Natural Zeolites. pp. 221–223., New York (1995)
    Caputo, D., Liguori, B., Colella, C.: Some advances in understanding the pozzolanic activity of zeolites: the effect of zeolite structure. Cem. Concr. Compos. 30, 455–462 (2008). https://doi.org/10.1016/j.cemconcomp.2007.08.004
    Vigil de La Villa, R., Fernández, R., Rodríguez, O., García, R., Villar-Cociña, E., Frías, M.: Evolution of the pozzolanic activity of a thermally treated zeolite. J. Mater. Sci. 48, 3213–3224 (2013). https://doi.org/10.1007/s10853-012-7101-z
    Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001
    Siddique, R., Khan, M.I.: Supplementary Cementing Materials. Springer, Berlin (2011)
    Thomas, M.: The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res. 41, 1224–1231 (2011). https://doi.org/10.1016/j.cemconres.2010.11.003
    Brykov, A., Anisimova, A.: Efficacy of aluminum hydroxides as inhibitors of alkali-silica reactions. Mater. Sci. Appl. 4, 1–6 (2013)
    Barger, G.S., Bayles, J., Blair, B., Brown, D., Chen, H., Conway, T., Hawkins, P.: Ettringite Formation and the Performance of Concrete. Portland Cement Association R&D, New York, pp. 1–16 (2001)
    Brykov, A.S., Vasil’ev, A.S., Mokeev, M.V.: Hydration of Portland cement in the presence of high activity aluminum hydroxides. Russ. J. Appl. Chem. 85, 1793–1799 (2012). https://doi.org/10.1134/S1070427212120014
    Insituto de Pesquisas Tecnológicas do Estado de São Paulo: Atividade pozolânica: método de Chapelle modificado. IPT, São Paulo (1997)
    NBR 5752: Associação Brasileria de Cimento Portland: NBR 5752 Materiais Pozolânicos - Determinação da Atividade Pozolânica com Cimento Portland - índice de Atividade Pozolânica com Cimento - Método de Ensaio. ABNT, Rio de Janeiro (2012)
    Técnicas, A.B.D.N.: Guia básico de utilização do Cimento Portland. ABNT, Rio de Janeiro (2002)
    Técnicas, A.B.D.N.: NBR 7215: Cimento Portland - determinação da resistência à compresão. ABNT, Rio de Janeiro (1997)
    Taylor, H.F.W.: Cement Chemistry. Thomas Telford, London (1997)
    Du, C.: A review of magnesium oxide in concrete. Concr. Int. 27:45–50 (2005)
    Zhang, T., Cheeseman, C.R., Vandeperre, L.J.: Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 41, 439–442 (2011). https://doi.org/10.1016/j.cemconres.2011.01.016
    David, E., Kopac, J.: Hydrolysis of aluminum dross material to achieve zero hazardous waste. J. Hazard. Mater. 209, 501–509 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.064
    Tsakiridis, P.E.: Aluminium salt slag characterization and utilization—a review. J. Hazard. Mater. (2012). https://doi.org/10.1016/j.jhazmat.2012.03.052
    Balan, E., Blanchard, M., Hochepied, J.F., Lazzeri, M.: Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite. Phys. Chem. Miner. 35, 279–285 (2008). https://doi.org/10.1007/s00269-008-0221-y
    Bosmans, H.J.: Unit cell and crystal structure of nordstrandite, Al(OH)3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26, 649–652 (1970). https://doi.org/10.1107/S0567740870002911
    Schoen, R., Roberson, C.E.: Structures of aluminum hydroxide and geochemical implications. Am. Mineral. 55, 43–77 (1970)
    Barnhisel, R.I., Rich, C.I.: Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces. Soil Sci. Soc. Am. J. 29, 531 (1965). https://doi.org/10.2136/sssaj1965.03615995002900050018x
    Violante, P., Violante, A., Tait, J.M.: Morphology of nordstrandite. Clays Clay Miner. 30, 431–437 (1982). https://doi.org/10.1346/CCMN.1982.0300605
    Prodromou, K.P., Pavlatou-Ve, A.S.: Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 43, 111–115 (1995). https://doi.org/10.1346/CCMN.1995.0430113
    Cordeiro, G.C., Toledo Filho, R.D., Fairbairn, E.M.R.: Caracterização de cinzado bagaço de cana-de-açúcar para emprego como pozolana em materiais cimentícios. Quim. Nova. 32, 82–86 (2009). https://doi.org/10.1590/S0100-40422010000800018
    Martirena Hernández, J., Middendorf, B., Gehrke, M., Budelmann, H.: Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cem. Concr. Res. 28, 1525–1536 (1998). https://doi.org/10.1016/S0008-8846(98)00130-6
    Mindat.org: Quartz-beta. https://www.mindat.org/min-7395.html.
    Wu, L.F., Shinzato, M.C., Andrade, S., Franchi, J.G., Andrade, VdaS.: Efeito da adição de zeólita e vermiculita na lixiviação de potássio do solo. Rev. do Inst. Geol. 34, 57–67 (2013). https://doi.org/10.5935/0100-929X.20130004
    Baldo, J.B., Santos, W.N.: Phase transitions and their effects on the thermal diffusivity behavior of some SiO2 polymorphs. Ceramica. 48, 172–177 (2002). https://doi.org/10.1590/S0366-69132002000300011
    Frías, M.: The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Adv. Cem. Res. 18, 1–6 (2006). https://doi.org/10.1680/adcr.2006.18.1.1
    Zhang, T., Vandeperre, L.J., Cheeseman, C.R.: Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 65, 8–14 (2014). https://doi.org/10.1016/j.cemconres.2014.07.001
    Kyritsis, K., Meller, N., Hall, C.: Chemistry and morphology of hydrogarnets formed in cement-based CASH hydroceramics cured at 200 °C to 350 °C. J. Am. Ceram. Soc. 92, 1105–1111 (2009). https://doi.org/10.1111/j.1551-2916.2009.02958.x
    Matschei, T., Lothenbach, B., Glasser, F.P.: Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37, 1379–1410 (2007). https://doi.org/10.1016/j.cemconres.2007.06.002
    Ramachandran, V.S.: Thermal analyses of cement components hydrated in the presence of calcium carbonate. Thermochim. Acta. 127, 385–394 (1988). https://doi.org/10.1016/0040-6031(88)87515-4
    Kakali, G., Tsivilis, S., Aggeli, E., Bati, M.: Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res 30, 2–6 (2000)
    Nied, D., Enemark-Rasmussen, K., L’Hopital, E., Skibsted, J., Lothenbach, B.: Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 79, 323–332 (2016). https://doi.org/10.1016/j.cemconres.2015.10.003
    Fernández-Carrasco, L., Vázquez, E.: Reactions of fly ash with calcium aluminate cement and calcium sulphate. Fuel. 88, 1533–1538 (2009). https://doi.org/10.1016/j.fuel.2009.02.018
    Wamba, A.G.N., Lima, E.C., Ndi, S.K., Thue, P.S., Kayem, J.G., Rodembusch, F.S., dos Reis, G.S., de Alencar, W.S.: Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of brilliant green 1 and reactive black 5 from aqueous solutions. Environ. Sci. Pollut. Res. 24, 21807–21820 (2017). https://doi.org/10.1007/s11356-017-9825-4
    Biricik, H., Sarier, N.: Comparative study of the characteristics of nano silica-, silica fume- and fly ash-incorporated cement mortars. Mater. Res. 17, 570–582 (2014). https://doi.org/10.1590/S1516-14392014005000054
    Fernández-Carrasco, L., Torrens-Martín, D., Morales, L.M., Martínez-Ramírez, S.: Infrared spectroscopy in the analysis of building and construction materials. Infrared Spectrosc. – Mater. Sci. Eng. Technol. (2012). https://doi.org/10.5772/36186
    Allahverdi, a, Kani, E., Yazdanipour, M.: Effects of blast furnace slag on natural pozzolan- based geopolymer cement. Ceram Silickáty. 55, 68–78 (2011)
    Frost, R.L., Xi, Y.: Whelanite Ca5Cu2(OH)2CO3, Si6O17·4H2O—a vibrational spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 319–323 (2012). https://doi.org/10.1016/j.saa.2012.02.003
    Wang, L., He, Z., Cai, X.: Characterization of pozzolanic reaction and its effect on the C-S-H gel in fly ash-cement paste. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26, 319–324 (2011). https://doi.org/10.1007/s11595-011-0222-4
    Massazza, F.: Pozzolana and pozzolanic cements. In: Hewlett, P. (ed.) Lea’s Chemistry of Cement and Concrete, pp. 471–630. Arnold, London (1998)
    Uzal, B., Turanli, L., Yücel, H., Göncüoǧlu, M.C., Çulfaz, A.: Pozzolanic activity of clinoptilolite: a comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cem. Concr. Res. 40, 398–404 (2010). https://doi.org/10.1016/j.cemconres.2009.10.016
    Ahmadi, B., Shekarchi, M.: Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 32, 134–141 (2010). https://doi.org/10.1016/j.cemconcomp.2009.10.006
    Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M.: An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr. Build. Mater. 35, 1023–1033 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.038
    Ipavec, A., Gabrovšek, R., Vuk, T., Kaučič, V., MačEk, J., Meden, A.: Carboaluminate phases formation during the hydration of calcite-containing Portland cement. J. Am. Ceram. Soc. 94, 1238–1242 (2011). https://doi.org/10.1111/j.1551-2916.2010.04201.x
    De Weerdt, K.: Ternary Blended Cements with Fly Ash and Limestone. Part II: Limestone Powder. State of the Art. SINTEF Report, SINTEF Building and Infrastructure/COIN - Concrete Innovation Centre, Trondheim, Norway (2007)
    Henmi, C., Kusachi, I.: Clinotobermorite, Ca5Si6(O,OH)18·5H2O, a new mineral from Fuka, Okayama Prefecture, Japan. Mineral. Mag. 56, 353–358 (1992)
    Fernández, R., Isabel Ruiz, A., Cuevas, J.: Formation of C-A-S-H phases from the interaction between concrete or cement and bentonite. Clay Miner. 51, 223–235 (2016). https://doi.org/10.1180/claymin.2016.051.2.09
    Collepardi, M.: A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos. 25, 401–407 (2003). https://doi.org/10.1016/S0958-9465(02)00080-X
    Sutan, N.M., Yakub, I., Jaafar, M.S., Matori, K.A., Sahari, S.K.: Sustainable nanopozzolan modified cement: characterizations and morphology of calcium silicate hydrate during hydration. J. Nanomater. (2015). https://doi.org/10.1155/2015/713258
    Girão, A.V., Richardson, I.G., Taylor, R., Brydson, R.M.D.: Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 °C. Cem. Concr. Res. 40, 1350–1359 (2010). https://doi.org/10.1016/j.cemconres.2010.03.012
    Grangeon, S., Claret, F., Linard, Y., Chiaberge, C.: X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 69, 465–473 (2013). https://doi.org/10.1107/S2052519213021155
    Grangeon, S., Fernandez-Martinez, A., Baronnet, A., Marty, N., Poulain, A., Elkaïm, E., Roosz, C., Gaboreau, S., Henocq, P., Claret, F.: Quantitative X-ray pair distribution function analysis of nanocrystalline calcium silicate hydrates: a contribution to the understanding of cement chemistry. J. Appl. Crystallogr. 50, 14–21 (2017). https://doi.org/10.1107/S1600576716017404
    Martini, F., Borsacchi, S., Geppi, M., Tonelli, M., Ridi, F., Calucci, L.: Monitoring the hydration of MgO-based cement and its mixtures with Portland cement by 1H NMR relaxometry. Microporous Mesoporous Mater. (2016). https://doi.org/10.1016/j.micromeso.2017.05.031
    Jambor, J.: Influence of 3CaO·Al2O3·CaCO3·nH2O on the structure of cement paste. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 487–492. Paris (1980)
    Cussino, L., Negro, A.: Hydratation du ciment alumineux en presence d’agrégar siliceux et calcaire. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 62–67. Paris (1980)
    Cizer, Ö, Van Balen, K., Van Gemert, D.: Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv. Mater. Res. 133–134, 241–246 (2010). https://doi.org/10.4028/www.scientific.net/AMR.133-134.241