Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens (2018)

  • Authors:
  • USP affiliated authors: COUTINHO, LUIZ LEHMANN - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1186/s12864-018-4779-6
  • Subjects: FRANGOS DE CORTE; GORDURAS; MAPEAMENTO GENÉTICO; GENOMAS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s12864-018-4779-6 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1186/s12864-018-4779-6 (Fonte: Unpaywall API)

    Título do periódico: BMC Genomics

    ISSN: 1471-2164

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Evidência: oa journal (via doaj)
      • Licença: cc-by
      • Versão: publishedVersion
      • Tipo de hospedagem: publisher


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: BMC Genomics

    ISSN: 1471-2164

    Citescore - 2017: 4.08

    SJR - 2017: 2.11

    SNIP - 2017: 1.151


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MOREIRA, Gabriel Costa Monteiro; BOSCHIERO, Clarissa; CESAR, Aline Silva Mello; et al. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics, London, BioMed Central, v. 19, p. 1-13, 2018. Disponível em: < http://dx.doi.org/10.1186/s12864-018-4779-6 > DOI: 10.1186/s12864-018-4779-6.
    • APA

      Moreira, G. C. M., Boschiero, C., Cesar, A. S. M., Reecy, J. M., Godoy, T. F., Trevisoli, P. A., et al. (2018). A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics, 19, 1-13. doi:10.1186/s12864-018-4779-6
    • NLM

      Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Trevisoli PA, Cantão ME, Ledur MC, Ibelli AMG, Peixoto J de O, Moura ASAMT, Garrick D, Coutinho LL. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens [Internet]. BMC Genomics. 2018 ;19 1-13.Available from: http://dx.doi.org/10.1186/s12864-018-4779-6
    • Vancouver

      Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Trevisoli PA, Cantão ME, Ledur MC, Ibelli AMG, Peixoto J de O, Moura ASAMT, Garrick D, Coutinho LL. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens [Internet]. BMC Genomics. 2018 ;19 1-13.Available from: http://dx.doi.org/10.1186/s12864-018-4779-6

    Referências citadas na obra
    Resnky CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, et al. Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness. BMC Genomics. 2013;14:557.
    Nassar MK, Goraga ZS, Brockmann G. Quantitative trait loci segregating in crosses between New Hampshire and white leghorn chicken lines: III. Fat deposition and intramuscular fat content. Anim Genet. 2012;1(44):62–8.
    Zerehdaran S, Vereijken AL, van Arendonk JA, van der Waaijt EH. Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poult Sci. 2004;83:521–5.
    Ferrini G, Baucells MD, Esteve-García E, Barroeta AC. Dietary polyunsaturated fat reduces skin fat as well as abdominal fat in broiler chickens. Poult Sci. 2008;87(3):528–35.
    Jennen DGJ, Vereijken ALJ, Bovenhuis H, Crooijmans RPM, Veenendaal A, Van der Poel JJ, et al. Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci. 2004;3(83):295–301.
    Zhou H, Evock-Clover CM, McMurtry JP, Ashwell CM, Lamont SJ. Genome- wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. Poult Sci. 2007;86(2):267–76.
    Baéza E, Le Bihan-Duval E. Chicken lines divergent for low or high abdominal fat deposition: a relevant model to study the regulation of energy metabolism. Animal: an International Journal of Animal Bioscience. 2013;7:965–73.
    Wang SZ, Hu XX, Wang ZP, Li XC, Wang QG, Wang YX, et al. Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet Mol Res. 2012;11:956–65.
    Ikeobi CO, Woolliams JA, Morrice DR, Law A, Windsor D, Burt DW, et al. Quantitative trait loci affecting fatness in the chicken. Anim Genet. 2002;33(6):428–35.
    Lagarrigue S, Pitel F, Carre W, Abasht B, Le Roy P, Neau A, et al. Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet Sel Evol. 2006;38:85–97.
    Park H-B, Jacobsson L, Wahlberg P, Siegel PB, Andersson L. QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol Genomics. 2006;2(26):216–23.
    Pinto LFB, Packer IU, Ledur MC, Moura ASAMT. Nones k, Coutinho LL. Mapping quantitative trait loci in Gallus gallus using principal components utilização de componentes principais. Rev Bras Zootec. 2010:2434–41.
    Nones K, Ledur MC, Zanella EL, Klein C, Pinto LFB, Moura ASAMT, et al. Quantitative trait loci associated with chemical composition of the chicken carcass. Anim Genet. 2012;43:570–6.
    Rao Y, Shen X, Xia M, Luo C, Nie Q, Zhang D, et al. SNP mapping of QTL affecting growth and fatness on chicken GGA1. Genetics, selection, evolution: GSE. 2007;39(5):569–82.
    Abasht B, Dekkers JCM, Lamont SJ. Review of quantitative trait loci identified in the chicken. Poult Sci. 2006;85:2079–96.
    Sun Y, Zhao G, Liu R, Zheng M, Hu Y, Wu D, et al. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics. 2013;14:458.
    Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, et al. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-you chickens. PLoS One. 2013;8(4):e61172.
    Wang W, Zhang T, Wang J, Zhang G, Wang Y, Zhang Y, et al. Genome-wide association study of 8 carcass traits in Jinghai yellow chickens using specific-locus amplified fragment sequencing technology. Poult Sci. 2016;95(3):500–6.
    Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 2013;14:59.
    Pértille F, Zanella R, Felício AM, Ledur MC, Peixoto JO, Coutinho LL. Identification of polymorphisms associated with production traits on chicken (Gallus gallus) chromosome 4. Genet Mol Res. 2015;14(3):10717–28.
    Venturini GC, Cruz VA, Rosa JO, Baldi F, El Faro L, Ledur MC, et al. Genetic and phenotypic parameters of carcass and organ traits of broiler chickens. Genet. Mol. Res. 2014;13:10294–300.
    Fornari MB, Zanella R, Ibelli AMG, Fernandes LT, Cantão ME, Thomaz-Soccol V, et al. Unraveling the associations of osteoprotegerin gene with production traits in a paternal broiler line. Spring. 2014;3:682.
    Marchesi JAP, Buzanskas ME, Cantão ME, Ibelli AMG, Peixoto JO, Joaquim LB, et al. Relationship of runs of homozygosity with adaptive and production traits in a paternal broiler line. Animal. 2017:1–9.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
    Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, et al. Quality Control Procedures for Genome Wide Association Studies. Curr Protoc Hum Genet. 2011;Chapter 1:Unit1.19.
    Cesar ASM, Regitano CA, Tullio RR, Lanna DPD, Nassu RT, Mudado MA, et al. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet. 2014;15:39.
    Garrick DJ, Fernando RL. Implementing a QTL detection study (GWAS) using genomic prediction methodology. Methods Molecular Biology. 2013;1019:275–98.
    Rolf MM, Garrick DJ, Fountain T, Ramey HR, Weaber RL, Decker JE, et al. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle. Genet Sel Evol. 2015;47:23–30.
    Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, et al. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol. 2015;47(1):1–13.
    Van Goor A, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress. BMC Genomics. 2016;17(1):1.
    Onteru SK, Gorbach DM, Young JM, Garrick DJ, Dekkers JCM, Rothschild MF. Whole genome association studies of residual feed intake and related traits in the pig. PLoS One. 2013;8(6):e61756.
    Chicken QTL database (release 33), 2017. http://www.animalgenome.org/cgi-bin/QTLdb/GG/index . Acessed 18 Sept 2017.
    Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, et al. Ensembl 2013 (2013). Nucleic Acids Res. 2013;41(Database issue):D48–55.
    Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford). 2011; https://doi.org/10.1093/database/bar030 .
    Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 2009;4(1):44–57.
    Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.
    Moreira GCM, Godoy TF, Boschiero C, Gheyas A, Gasparin G, Andrade SCS, et al. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Anim Genet. 2015;46:141–7.
    Godoy TF, Moreira GCM, Boschiero C, Gheyas AA, Gasparin G, Paduan M, et al. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Anim Genet. 2015;46:158–63.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
    Boschiero C, Moreira GCM, Gheyas AA, Godoy TF, Gasparin G, Mariani PDSC, et al. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genomics. 2018;19(1):83.
    McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunning-ham F. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics. 2010;26:2069–70.
    Predicted data Ensembl – Ensembl (2017). http://www.ensembl.org/info/genome/variation/predicted_data.html . Accessed 18 Sept 2017.
    Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.
    Abasht B, Pitel F, Lagarrigue S, Le Bihan-Duval E, Le Roy P, Demeure O, et al. Fatness QTL on chicken chromosome 5 and interaction with sex. Genet Sel Evol. 2006;38:297–311.
    Nadaf J, Pitel F, Gilbert H, Duclos MJ, Vignoles F, Beaumont C, et al. QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines. Physiol Genomics. 2009;38(3):241–9.
    Gao Y, Du ZQ, Wei WH, Yu XJ, Deng XM, Feng CG, et al. Mapping quantitative trait loci regulating chicken body composition traits. Anim Genet. 2009;40(6):952–4.
    Sheng Z, Pettersson ME, Hu X, Luo C, Qu H, Shu D, et al. Genetic dissection of growth traits in a Chinese indigenous x commercial broiler chicken cross. BMC Genomics. 2013;14:151.
    Campos RLR, Nones K, Ledur MC, Moura ASAMT, Pinto LFB, Ambo M, et al. Quantitative trait loci associated with fatness in a broiler–layer cross. Anim Genet. 2009;40:729–36.
    Jennen DG, Vereijken AL, Bovenhuis H, Crooijmans RM, van der Poel JJ, Groenen MA. Confirmation of quantitative trait loci affecting fatness in chickens. Genetics, Selection, Evolution: GSE. 2005;37(3):215–28.
    Ankra-Badu GA, Shriner D, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, Beaumont C, et al. Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate. BMC Genomics. 2010;11:107.
    de los Campos G, Sorensen D, Gianola D. Genomic Heritability: What Is It? PLoS Genet. 2015;11(5):e1005048.
    Cahaner A, Nitsan Z. Evaluation of simultaneous selection for live body weight and against abdominal fat in broilers. Poult Sci. 1985;64:1257–63.
    Gaya LG, Ferraz JB, Rezende FM, Mourao GB, Mattos EC, Eler JP, Filho TM. Heritability and genetic correlation estimates for performance and carcass and body composition traits in a male broiler line. Poult Sci. 2006;85:837–43.
    Flisar T, Malovrh S, Tercic D, Holcman A, Kovac M. Thirty-four generations of divergent selection for 8-week body weight in chickens. Poult Sci. 2014;93:16–23.
    Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, Habier D, Fernando R, Garrick DJ, Dekkers JCM. Persistence of accuracy of genomic estimated breeding values over generations in layer chickens. Genet Sel Evol. 2011;43:23–10.
    Wolc A, Stricker C, Arango J, Settar P, Fulton JE, O'Sullivan NP, Preisinger R, Habier D, Fernando R, Garrick DJ. Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genet Sel Evol. 2011;43:5–10.
    Wolc A, Arango J, Jankowski T, Dunn I, Settar P, Fulton JE, et al. Genome-wide association study for egg production and quality in layer chickens. J Anim Breed Genet. 2014;131(3):173–82.
    Wolc A, Arango J, Jankowski T, Settar P, Fulton JE, O'Sullivan NP, et al. Genome-wide association study for Marek's disease mortality in layer chickens. Avian Dis. 2013;57:395–400.
    Fernando RL, Garrick DJ. Bayesian methods applied to GWAS. Methods Molecular Biology. 2013;1019:237–74.
    Sheng ZY, Pettersson ME, Honaker CF, Siegel PB, Carlborg O. Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment. Genome Biol. 2015;16:219.
    Mackay TF. Q&A: Genetic analysis of quantitative traits. J Biol. 2009;8(3):23.
    Nakade K, Pan J, Yoshiki A, Ugai H, Kimura M, Liu B, et al. JDP2 suppresses adipocyte differentiation by regulating histone acetylation. Cell death Diff. 2007;14:1398–405.
    Huang Y-C, Hasegawa H, Wang S-W, Ku C-C, Lin Y-C, Chiou S-S, et al. Jun dimerization protein 2 controls senescence and differentiation via regulating histone modification. J Biomed Biotechnol. 2011;2011:569034.
    Shen W, Martinez K, Chuang CC, McIntosh M. The phospholipase C inhibitor U73122 attenuates trans-10, cis-12 conjugated linoleic acid-mediated inflammatory signaling and insulin resistance in human adipocytes. J Nutr. 2013;143(5):584–90.
    Krapivner S, Iglesias MJ, Silveira A, Tegnér J, Björkegren J, Hamsten A, et al. DGAT1 participates in the effect of HNF4A on hepatic secretion of triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol. 2010;30(5):962–7.
    Griffin H. Understanding genetic variation in fatness in chickens. Annual Report 95/96 Roslin Institute 1996;35–38.
    Kadereit B, Kumar P, Wang W-J, Miranda D, Snapp EL, Severina N, et al. Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci U S A. 2008;105(1):94–9.
    Choudhary V, Ojha N, Golden A, Prinz WA. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol. 2015;211(2):261–71.
    Yan J, Yang H, Gan L, Sun C. Adiponectin-impaired adipocyte differentiation negatively regulates fat deposition in chicken. J Anim Physiol Anim Nutr (Berl). 2014;98:530–7.
    Gan L, Yan J, Liu Z, Feng M, Sun C. Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2 pathway in chicken adipocyte. J Cell Biochem. 2015;116:1090–100.
    Nagata N, Matsuo K, Bettaieb A, Bakke J, Matsuo I, Graham J, et al. Hepatic Src homology phosphatase 2 regulates energy balance in mice. Endocrinology. 2012;153(7):3158–69.
    Krajewska M, Banares S, Zhang EE, Huang X, Scadeng M, Jhala US, et al. Development of Diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase. Am J Pathol. 2008;172(5):1312–24.
    Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–9.
    Flock MR, Green MH, Kris-Etherton PM. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv Nutr. 2011;2(3):261–74.
    Delgado-Lista J, Perez-Jimenez F, Ruano J, Perez-Martinez P, Fuentes F, Criado-Garcia J, et al. Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men. J Lipid Res. 2010;51(1):63–73.
    Baroukh N, Bauge E, Akiyama J, Chang J, Afzal V, Fruchart JC, et al. Analysis of apolipoprotein A5, c3, and plasma triglyceride concentrations in genetically engineered mice. Arterioscler Thromb Vasc Biol. 2004;24:1297–302.
    Jo BS, Choi SS. Introns: the functional benefits of introns in genomes. Genomics Inform. 2015;13(4):112–8.
    Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet. 2010;18:1054–6.
    Chatterjee S, Pal JK. Role of 50 - and 30 -untranslated regions of mRNAs in human diseases. Biol Cell. 2009;101:251–62.