Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss (2018)

  • Authors:
  • USP affiliated authors: NETTO, REGINA CELIA MINGRONI - IB
  • USP Schools: IB
  • DOI: 10.1038/s41598-018-26818-2
  • Subjects: PERDA AUDITIVA; MUTAÇÃO GENÉTICA; GENÉTICA MÉDICA; GENÉTICA MOLECULAR; GENOMAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-26818-2 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-018-26818-2 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Evidência: oa journal (via doaj)
      • Licença: cc-by
      • Versão: publishedVersion
      • Tipo de hospedagem: publisher


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DANTAS, Vitor G. L; RAVAL, Dantas1; BALLESTEROS, Angela; et al. Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss. Scientific Reports, London, v. 8, p. 1-15, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-26818-2 > DOI: 10.1038/s41598-018-26818-2.
    • APA

      Dantas, V. G. L., Raval, D. 1, Ballesteros, A., Cui, R., Gunther, L. K., Yamamoto, G. L., et al. (2018). Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss. Scientific Reports, 8, 1-15. doi:10.1038/s41598-018-26818-2
    • NLM

      Dantas VGL, Raval D1, Ballesteros A, Cui R, Gunther LK, Yamamoto GL, Alves LU, Bueno AS, Lezirovitz K, Pirana S, Mendes BCA, Yengo CM, Kachar B, Mingroni-Netto RC. Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss [Internet]. Scientific Reports. 2018 ; 8 1-15.Available from: http://dx.doi.org/10.1038/s41598-018-26818-2
    • Vancouver

      Dantas VGL, Raval D1, Ballesteros A, Cui R, Gunther LK, Yamamoto GL, Alves LU, Bueno AS, Lezirovitz K, Pirana S, Mendes BCA, Yengo CM, Kachar B, Mingroni-Netto RC. Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss [Internet]. Scientific Reports. 2018 ; 8 1-15.Available from: http://dx.doi.org/10.1038/s41598-018-26818-2

    Referências citadas na obra
    Keats, B. J. & Berlin, C. I. Genomics and hearing impairment. Genome research 9, 7–16 (1999).
    Guilford, P. et al. A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nature genetics 6, 24–28, https://doi.org/10.1038/ng0194-24 (1994).
    Walsh, T. et al. From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proceedings of the National Academy of Sciences of the United States of America 99, 7518–7523, https://doi.org/10.1073/pnas.102091699 (2002).
    Montell, C. & Rubin, G. M. The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 52, 757–772 (1988).
    Porter, J. A., Hicks, J. L., Williams, D. S. & Montell, C. Differential localizations of and requirements for the two Drosophila ninaC kinase/myosins in photoreceptor cells. The Journal of cell biology 116, 683–693 (1992).
    Porter, J. A. & Montell, C. Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. The Journal of cell biology 122, 601–612 (1993).
    Dose, A. C. & Burnside, B. Cloning and chromosomal localization of a human class III myosin. Genomics 67, 333–342, https://doi.org/10.1006/geno.2000.6256 (2000).
    Dose, A. C. et al. Myo3A, one of two class III myosin genes expressed in vertebrate retina, is localized to the calycal processes of rod and cone photoreceptors and is expressed in the sacculus. Molecular biology of the cell 14, 1058–1073, https://doi.org/10.1091/mbc.E02-06-0317 (2003).
    Dose, A. C., Ananthanarayanan, S., Moore, J. E., Burnside, B. & Yengo, C. M. Kinetic mechanism of human myosin IIIA. The Journal of biological chemistry 282, 216–231, https://doi.org/10.1074/jbc.M605964200 (2007).
    Les Erickson, F., Corsa, A. C., Dose, A. C. & Burnside, B. Localization of a class III myosin to filopodia tips in transfected HeLa cells requires an actin-binding site in its tail domain. Molecular biology of the cell 14, 4173–4180, https://doi.org/10.1091/mbc.E02-10-0656 (2003).
    Komaba, S., Inoue, A., Maruta, S., Hosoya, H. & Ikebe, M. Determination of human myosin III as a motor protein having a protein kinase activity. The Journal of biological chemistry 278, 21352–21360, https://doi.org/10.1074/jbc.M300757200 (2003).
    Salles, F. T. et al. Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nature cell biology 11, 443–450, https://doi.org/10.1038/ncb1851 (2009).
    Ebrahim, S. et al. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nature communications 7, 10833, https://doi.org/10.1038/ncomms10833 (2016).
    Liu, H. et al. Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin. eLife 5, https://doi.org/10.7554/eLife.12856 (2016).
    Mecklenburg, K. L. et al. Invertebrate and Vertebrate Class III Myosins Interact with MORN Repeat-Containing Adaptor Proteins. PloS one 10, e0122502, https://doi.org/10.1371/journal.pone.0122502 (2015).
    Grati, M. et al. Myo3a Causes Human Dominant Deafness And Interacts With Protocadherin 15-Cd2 Isoform. Human mutation. https://doi.org/10.1002/humu.22961 (2016).
    Walsh, V. L. et al. A mouse model for human hearing loss DFNB30 due to loss of function of myosin IIIA. Mammalian genome: official journal of the International Mammalian Genome Society 22, 170–177, https://doi.org/10.1007/s00335-010-9310-6 (2011).
    Qu, R. et al. Identification of a novel homozygous mutation in MYO3A in a Chinese family with DFNB30 non-syndromic hearing impairment. International journal of pediatric otorhinolaryngology 84, 43–47, https://doi.org/10.1016/j.ijporl.2016.02.036 (2016).
    Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research 42, W252–258, https://doi.org/10.1093/nar/gku340 (2014).
    Quintero, O. A. et al. Intermolecular autophosphorylation regulates myosin IIIa activity and localization in parallel actin bundles. The Journal of biological chemistry 285, 35770–35782, https://doi.org/10.1074/jbc.M110.144360 (2010).
    Raval, M. H. et al. Impact of the motor and tail domains of class III myosins on regulating the formation and elongation of actin protrusions. The Journal of biological chemistry. https://doi.org/10.1074/jbc.M116.733741 (2016).
    Schneider, M. E. et al. A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. The Journal of neuroscience: the official journal of the Society for Neuroscience 26, 10243–10252, https://doi.org/10.1523/JNEUROSCI.2812-06.2006 (2006).
    Manor, U., Grati, M., Yengo, C. M., Kachar, B. & Gov, N. S. Competition and compensation: dissecting the biophysical and functional differences between the class 3 myosin paralogs, myosins 3a and 3b. Bioarchitecture 2, 171–174, https://doi.org/10.4161/bioa.21733 (2012).
    Merritt, R. C. et al. Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions. Current biology: CB 22, 320–325, https://doi.org/10.1016/j.cub.2011.12.053 (2012).
    Trivedi, D. V., David, C., Jacobs, D. J. & Yengo, C. M. Switch II mutants reveal coupling between the nucleotide- and actin-binding regions in myosin V. Biophysical journal 102, 2545–2555, https://doi.org/10.1016/j.bpj.2012.04.025 (2012).
    Sweeney, H. L. & Houdusse, A. Structural and functional insights into the Myosin motor mechanism. Annual review of biophysics 39, 539–557, https://doi.org/10.1146/annurev.biophys.050708.133751 (2010).
    Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).
    Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).
    Lelli, A. et al. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth. The Journal of cell biology. https://doi.org/10.1083/jcb.201509017 (2016).
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20, 1297–1303, https://doi.org/10.1101/gr.107524.110 (2010).
    Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research 38, e164, https://doi.org/10.1093/nar/gkq603 (2010).
    Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nature methods 7, 248–249, https://doi.org/10.1038/nmeth0410-248 (2010).
    Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols 4, 1073–1081, https://doi.org/10.1038/nprot.2009.86 (2009).
    Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature methods 11, 361–362, https://doi.org/10.1038/nmeth.2890 (2014).
    Abecasis, G. R., Cherny, S. S., Cookson, W. O. & Cardon, L. R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nature genetics 30, 97–101, https://doi.org/10.1038/ng786 (2002).
    Nunes, K. et al. HLA imputation in an admixed population: An assessment of the 1000 Genomes data as a training set. Human immunology 77, 307–312, https://doi.org/10.1016/j.humimm.2015.11.004 (2016).
    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328, https://doi.org/10.1093/bioinformatics/bts606 (2012).
    Quintero, O. A. et al. Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop. The Journal of biological chemistry 288, 37126–37137, https://doi.org/10.1074/jbc.M113.511014 (2013).
    Yengo, C. M., Takagi, Y. & Sellers, J. R. Temperature dependent measurements reveal similarities between muscle and non-muscle myosin motility. Journal of muscle research and cell motility 33, 385–394, https://doi.org/10.1007/s10974-012-9316-7 (2012).
    Trivedi, D. V., Muretta, J. M., Swenson, A. M., Thomas, D. D. & Yengo, C. M. Magnesium impacts myosin V motor activity by altering key conformational changes in the mechanochemical cycle. Biochemistry 52, 4710–4722, https://doi.org/10.1021/bi4004364 (2013).
    Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods in enzymology 504, 183–200, https://doi.org/10.1016/B978-0-12-391857-4.00009-4 (2012).
    Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9, 173–175, https://doi.org/10.1038/nmeth.1818 (2011).
    Hildebrand, A., Remmert, M., Biegert, A. & Soding, J. Fast and accurate automatic structure prediction with HHpred. Proteins 77(Suppl 9), 128–132, https://doi.org/10.1002/prot.22499 (2009).
    Bhattacharya, D., Nowotny, J., Cao, R. & Cheng, J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44, W406–409, https://doi.org/10.1093/nar/gkw336 (2016).
    Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26, 283–291, https://doi.org/10.1107/S0021889892009944 (1993).
    Maiti, R., Van Domselaar, G. H., Zhang, H. & Wishart, D. S. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32, W590–594, https://doi.org/10.1093/nar/gkh477 (2004).
    Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612, https://doi.org/10.1002/jcc.20084 (2004).
    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539, https://doi.org/10.1038/msb.2011.75 (2011).
    Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191, https://doi.org/10.1093/bioinformatics/btp033 (2009).
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of molecular biology 215, 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).
    Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1) (2017).