Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

ICARUS: retrieving skin ulcer images through bag-of-signatures (2018)

  • Authors:
  • USP affiliated authors: TRAINA JUNIOR, CAETANO - ICMC ; TRAINA, AGMA JUCI MACHADO - ICMC
  • USP Schools: ICMC; ICMC
  • DOI: 10.1109/CBMS.2018.00022
  • Subjects: BANCO DE DADOS MULTIMÍDIA; RECUPERAÇÃO DA INFORMAÇÃO; ÚLCERA CUTÂNEA
  • Keywords: Bag-of-visual-words; skin ulcer; image retrieval
  • Language: Inglês
  • Imprenta:
  • Source:
  • Conference titles: International Symposium on Computer-Based Medical Systems - CBMS
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1109/CBMS.2018.00022 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1109/CBMS.2018.00022 (Fonte: Unpaywall API)

    Título do periódico: Algal Research

    ISSN: 2211-9264



      Não possui versão em Acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CHINO, Daniel Y. T; SCABORA, Lucas C; CAZZOLATO, Mirela T; et al. ICARUS: retrieving skin ulcer images through bag-of-signatures. Anais.. Los Alamitos: IEEE, 2018.Disponível em: DOI: 10.1109/CBMS.2018.00022.
    • APA

      Chino, D. Y. T., Scabora, L. C., Cazzolato, M. T., Jorge, A. E. S., Traina Junior, C., & Traina, A. J. M. (2018). ICARUS: retrieving skin ulcer images through bag-of-signatures. In Proceedings. Los Alamitos: IEEE. doi:10.1109/CBMS.2018.00022
    • NLM

      Chino DYT, Scabora LC, Cazzolato MT, Jorge AES, Traina Junior C, Traina AJM. ICARUS: retrieving skin ulcer images through bag-of-signatures [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1109/CBMS.2018.00022
    • Vancouver

      Chino DYT, Scabora LC, Cazzolato MT, Jorge AES, Traina Junior C, Traina AJM. ICARUS: retrieving skin ulcer images through bag-of-signatures [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1109/CBMS.2018.00022

    Referências citadas na obra
    Barbosa, V.S., Menegatto, V.A.: Strictly positive definite kernels on two-point compact homogeneous spaces. Math. Ineq. Appl. 19(2), 743–756 (2016)
    Berg, C., Porcu, E.: From Schoenberg coefficients to Schoenberg functions. Constr. Approx. 45(2), 217–241 (2017)
    Berg, C., Porcu, E.: Orthogonal expansions related to compact Gelfand pairs. Expo. Math. https://doi.org/10.1016/j.exmath.2017.10.005 (to appear)
    Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Graduate Texts in Mathematics, vol. 100. Springer, New York (1984)
    Bochner, S., Funktionen, M.: Stieltjessche Integrale und harmonische Analyse. Math. Ann. 108(1), 378–410 (1933)
    Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131(9), 2733–2740 (2003)
    Cheney, W., Light, W.: A Course in Approximation Theory. Reprint of the 2000 original. Graduate Studies in Mathematics, vol. 101. American Mathematical Society, Providence, RI (2009)
    Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York (2013)
    Emonds, J., Führ, H.: Strictly positive definite functions on compact abelian groups. Proc. Am. Math. Soc. 139(3), 1105–1113 (2011)
    Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré Sect. B (N.S.) 3, 121–126 (1967)
    Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013)
    Guella, J., Menegatto, V.A.: Strictly positive definite kernels on a product of spheres. J. Math. Anal. Appl. 435(1), 286–301 (2016)
    Guella, J.C., Menegatto, V.A.: Strictly positive definite kernels on the torus. Constr. Approx. 46(2), 271–284 (2017)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: Strictly positive definite kernels on a product of spheres II. SIGMA Symmetry Integrability Geom. Methods Appl. 12, Paper No. 103 (2016)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: An extension of a theorem of Schoenberg to products of spheres. Banach J. Math. Anal. 10(4), 671–685 (2016)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: Strictly positive definite kernels on a product of circles. Positivity 21(1), 329–342 (2017)
    Menegatto, V.A.: Strictly positive definite kernels on the Hilbert sphere. Appl. Anal. 55(1–2), 91–101 (1994)
    Menegatto, V.A., Oliveira, C.P., Peron, A.P.: Strictly positive definite kernels on subsets of the complex plane. Comput. Math. Appl. 51(8), 1233–1250 (2006)
    Narcowich, F.J.: Recent developments in approximation via positive definite functions. In: Approximation Theory IX (Nashville, TN, 1998), Innov. Appl. Math., vol. 2, pp. 221–242. Vanderbilt Univ. Press, Nashville, TN (1998)
    Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)
    Shapiro, V.L.: Fourier Series in Several Variables with Applications to Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton (2011)
    Sun, X.: Conditionally positive definite functions and their application to multivariate interpolations. J. Approx. Theory 74(2), 159–180 (1993)
    Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)