Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model (2018)

  • Authors:
  • USP affiliated authors: ERGER, INAR CASTRO - FCF ; COGLIATI, BRUNO - FMVZ
  • USP Schools: FCF; FMVZ
  • DOI: 10.1007/s00204-018-2255-3
  • Subjects: HEPATOPATIAS; BIOMARCADORES; PROTEÍNAS DA MEMBRANA; MODELOS ANIMAIS DE DOENÇAS
  • Keywords: liver fibrosis; pannexin1
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00204-018-2255-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s00204-018-2255-3 (Fonte: Unpaywall API)

    Título do periódico: Archives of Toxicology

    ISSN: 0340-5761,1432-0738



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Archives of Toxicology

    ISSN: 0340-5761

    Citescore - 2017: 4.79

    SJR - 2017: 1.541

    SNIP - 2017: 1.62


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      YANGUAS, Sara Crespo; NOGUEIRA, Marina Sayuri; CASTRO, Inar Alves de; et al. Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model. Archives of Toxicology, Heidelberg, Springer, v. 92, n. 8, p. 2607-2627, 2018. Disponível em: < http://dx.doi.org/10.1007/s00204-018-2255-3 > DOI: 10.1007/s00204-018-2255-3.
    • APA

      Yanguas, S. C., Nogueira, M. S., Castro, I. A. de, Romualdo, G. R., Barbisan, L. F., Goes, B. M., et al. (2018). Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model. Archives of Toxicology, 92( 8), 2607-2627. doi:10.1007/s00204-018-2255-3
    • NLM

      Yanguas SC, Nogueira MS, Castro IA de, Romualdo GR, Barbisan LF, Goes BM, Gijbels E, Vinken M, Cogliati B, Silva TC da, Pereira IVA, Maes M, Willebrords J, Shestopalov VI. Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model [Internet]. Archives of Toxicology. 2018 ; 92( 8): 2607-2627.Available from: http://dx.doi.org/10.1007/s00204-018-2255-3
    • Vancouver

      Yanguas SC, Nogueira MS, Castro IA de, Romualdo GR, Barbisan LF, Goes BM, Gijbels E, Vinken M, Cogliati B, Silva TC da, Pereira IVA, Maes M, Willebrords J, Shestopalov VI. Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model [Internet]. Archives of Toxicology. 2018 ; 92( 8): 2607-2627.Available from: http://dx.doi.org/10.1007/s00204-018-2255-3

    Referências citadas na obra
    Bao Y, Chen Y, Ledderose C, Li L, Junger WG (2013) Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 288:22650–22657. https://doi.org/10.1074/jbc.M113.476283
    Cai SY, Ouyang X, Chen Y et al (2017) Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2:e90780. https://doi.org/10.1172/jci.insight.90780
    Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ (2003) Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 83:655–663
    Chekeni FB, Elliott MR, Sandilos JK et al (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867. https://doi.org/10.1038/nature09413
    Chen W, Xu WH (2015) β-Actin as a loading control: less than 2 µg of total protein should be loaded. Electrophoresis 36:2046–2049. https://doi.org/10.1002/elps.201500138
    Cogliati B, Da Silva TC, Aloia TP et al (2011) Morphological and molecular pathology of CCL4-induced hepatic fibrosis in connexin43-deficient mice. Microsc Res Tech 74:421–429. https://doi.org/10.1002/jemt.20926
    Cogliati B, Crespo Yanguas S, Da Silva TC et al (2016) Connexin32 deficiency exacerbates carbon tetrachloride-induced hepatocellular injury and liver fibrosis in mice. Toxicol Mech Methods 26:362–370. https://doi.org/10.1080/15376516.2016.1190991
    Crespo Yanguas S, Willebrords J, Johnstone SR et al (2017) Pannexin1 as mediator of inflammation and cell death. Biochim Biophys Acta 1864:51–61. https://doi.org/10.1016/j.bbamcr.2016.10.006
    Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54:133–144. https://doi.org/10.1002/hep.24341
    Dahl G (2015) ATP release through pannexon channels. Philos Trans R Soc Lond B Biol Sci 370:20140191. https://doi.org/10.1098/rstb.2014.0191
    Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758
    Dolmatova E, Spagnol G, Boassa D et al (2012) Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 303:H1208–H1218. https://doi.org/10.1152/ajpheart.00251.2012
    Dunning S, Ur Rehman A, Tiebosch MH et al (2013) Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Biochim Biophys Acta 1832:2027–2034. https://doi.org/10.1016/j.bbadis.2013.07.008
    Dvoriantchikova G, Ivanov D, Barakat D et al (2012) Genetic ablation of Pannexin1 protects retinal neurons from ischemic injury. PLoS One 7:e31991. https://doi.org/10.1371/journal.pone.0031991
    Eaton SL, Roche SL, Llavero Hurtado M et al (2013) Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS One 8:e72457. https://doi.org/10.1371/journal.pone.0072457
    Gandhi CR (2012) Oxidative stress and hepatic stellate cells: a paradoxical relationship. Trends Cell Mol Biol 7:1–10
    Hao H, Cao L, Jiang C et al (2017) Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab 25:856–867. https://doi.org/10.1016/j.cmet.2017.03.007
    Hara T, Bacon KB, Cho LC et al (1995) Molecular cloning and functional characterization of a novel member of the C-C chemokine family. J Immunol 155:5352–5358
    Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H (2005) Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology 128:138–146. https://doi.org/10.1053/j.gastro.2004.10.005
    Jiang S, Zhang Y, Zheng JH et al (2017) Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2 × 7R-mediated NLRP3 inflammasome activation. Pharmacol Res 117:82–93. https://doi.org/10.1016/j.phrs.2016.11.040
    Karlmark KR, Weiskirchen R, Zimmermann HW et al (2009) Hepatic recruitment of the inflammatory Gr1 + monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50:261–274. https://doi.org/10.1002/hep.22950
    Kim HY, Kim SJ, Lee SM (2015) Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J 282:259–270. https://doi.org/10.1111/febs.13123
    Kowal JM, Haanes KA, Christensen NM, Novak I (2015) Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun Signal 13:28. https://doi.org/10.1186/s12964-015-0107-9
    Krenkel O, Tacke F (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17:306–321. https://doi.org/10.1038/nri.2017.11
    Krick S, Wang J, St-Pierre M, Gonzalez C, Dahl G, Salathe M (2016) Dual oxidase 2 (Duox2) regulates pannexin 1-mediated ATP release in primary human airway epithelial cells via changes in intracellular pH and not H2O2 production. J Biol Chem 291:6423–6432. https://doi.org/10.1074/jbc.M115.664854
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
    Maes M, McGill MR, da Silva TC et al (2016) Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta 1862:1111–1121. https://doi.org/10.1016/j.bbadis.2016.02.007
    Maes M, McGill MR, da Silva TC et al (2017) Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 91:2245–2261. https://doi.org/10.1007/s00204-016-1885-6
    Moles A, Murphy L, Wilson CL et al (2014) A TLR2/S100A9/CXCL-2 siganling for neutrophil recruitment in acute and chronic liver injury in the mouse. J Hepatol 60:782–791. https://doi.org/10.1016/j.jhep.2013.12.005
    Pradere JP, Kluwe J, De Minicis S et al (2013) Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58:1461–1473. https://doi.org/10.1002/hep.26429
    Puche JE, Lee YA, Jiao J et al (2013) A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 57:339–350. https://doi.org/10.1002/hep.26053
    Rivero-Gutiérrez B, Anzola A, Martínez-Augustin O, de Medina FS (2014) Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting. Anal Biochem 467:1–3. https://doi.org/10.1016/j.ab.2014.08.027
    Saito JM, Bostick MK, Campe CB, XU J, Maher JJ (2003) Infiltrating neutrophils in bile duct-ligated livers do not promote hepatic fibrosis. Hepatol Res 25:180–191. https://doi.org/10.1016/S1386-6346(02)00247-4
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529. https://doi.org/10.1002/mrd.22489
    Seifert L, Deutsch M, Alothman S et al (2015) Dectin-1 regulates hepatic fibrosis and hepatocarcinogenesis by suppressing TLR4 signaling pathways. Cell Rep 13:1909–1921. https://doi.org/10.1016/j.celrep.2015.10.058
    Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61:1066–1079. https://doi.org/10.1002/hep.27332
    Simard JC, Cesaro A, Chapeton-Montes J et al (2013) S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB. PLoS One 8:e72138. https://doi.org/10.1371/journal.pone.0072138
    Tag CG, Sauer-Lehnen S, Weiskirchen S et al (2015) Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp 96:52438. https://doi.org/10.3791/52438
    Taylor SC, Posch A (2014) The design of a quantitative western blot experiment. Biomed Res Int 2014:361590. https://doi.org/10.1155/2014/361590
    Taylor SC, Berkelman T, Yadav G, Hammond M (2013) A defined methodology for reliable quantification of Western blot data. Mol Biotechnol 55:217–226. https://doi.org/10.1007/s12033-013-9672-6
    Willebrords J, Cogliati B, Pereira IVA et al (2017a) Inhibition of connexin hemichannels alleviates non-alcoholic steatohepatitis in mice. Sci Rep 7:8268. https://doi.org/10.1038/s41598-017-08583-w
    Willebrords J, Maes M, Pereira IVA et al (2017b) Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochim Biophys Acta 1864:819–830. https://doi.org/10.1016/j.bbadis.2017.12.013
    Woolbright BL, Jaeschke H (2012) Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 18:4985–4993. https://doi.org/10.3748/wjg.v18.i36.4985
    Wree A, Eguchi A, McGeough MD et al (2014) NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59:898–910. https://doi.org/10.1002/hep.26592
    Xiao F, Waldrop SL, Khimji AK, Kilic G (2012) Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells. Am J Physiol Cell Physiol 303:C1034–C1044. https://doi.org/10.1152/ajpcell.00175.2012
    Xiao F, Waldrop SL, Bronk SF, Gores GJ, Davis LS, Kilic G (2015) Lipoapoptosis induced by saturated free fatty acids stimulates monocyte migration: a novel role for Pannexin1 in liver cells. Purinergic Signal 11:347–359. https://doi.org/10.1007/s11302-015-9456-5
    Xie G, Wang X, Wang L et al (2012) Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 142:918–927.e6. https://doi.org/10.1053/j.gastro.2011.12.017
    Yan HH, Jiang J, Pang Y et al (2015) CCL9 induced by TGF-β signaling in myeloid cells enhances tumor cell survival in the premetastatic organ. Cancer Res 75:5283–5298. https://doi.org/10.1158/0008-5472.CAN-15-2282-T