Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Admissible nested covariance models over spheres cross time (2018)

  • Authors:
  • USP affiliated authors: PERON, ANA PAULA - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s00477-018-1576-3
  • Subjects: ANÁLISE FUNCIONAL
  • Keywords: Covariance functions; Nested models; Negative covariance; Spheres
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00477-018-1576-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00477-018-1576-3 (Fonte: Unpaywall API)

    Título do periódico: Stochastic Environmental Research and Risk Assessment

    ISSN: 1436-3240,1436-3259



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Stochastic Environmental Research and Risk Assessment

    ISSN: 1436-3240

    Citescore - 2017: 2.57

    SJR - 2017: 1.096

    SNIP - 2017: 1.173


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PERON, Ana Paula; PORCU, Emilio; EMERY, Xavier. Admissible nested covariance models over spheres cross time. Stochastic Environmental Research and Risk Assessment, New York, Springer, v. No 2018, n. 11, p. 3053-3066, 2018. Disponível em: < http://dx.doi.org/10.1007/s00477-018-1576-3 > DOI: 10.1007/s00477-018-1576-3.
    • APA

      Peron, A. P., Porcu, E., & Emery, X. (2018). Admissible nested covariance models over spheres cross time. Stochastic Environmental Research and Risk Assessment, No 2018( 11), 3053-3066. doi:10.1007/s00477-018-1576-3
    • NLM

      Peron AP, Porcu E, Emery X. Admissible nested covariance models over spheres cross time [Internet]. Stochastic Environmental Research and Risk Assessment. 2018 ; No 2018( 11): 3053-3066.Available from: http://dx.doi.org/10.1007/s00477-018-1576-3
    • Vancouver

      Peron AP, Porcu E, Emery X. Admissible nested covariance models over spheres cross time [Internet]. Stochastic Environmental Research and Risk Assessment. 2018 ; No 2018( 11): 3053-3066.Available from: http://dx.doi.org/10.1007/s00477-018-1576-3

    Referências citadas na obra
    Arafat A, Porcu E, Bevilacqua M, Mateu J (2018) Equivalence and orthogonality of Gaussian measures on spheres. J Multivar Anal 167:306–318
    Atkinson K, Han W (2012) Spherical harmonics and approximations on the unit sphere: an introduction, volume 2044 of lecture notes in mathematics. Springer, Heidelberg
    Berg C, Porcu E (2017) From Schoenberg coefficients to Schoenberg functions. Constr Approx 45:217–241
    Berg C, Peron AP, Porcu E (2018) Schoenberg’s theorem for real and complex Hilbert spheres revisited. J Approx Theory 228:58–78
    Bevilacqua M, Gaetan C, Mateu J, Porcu E (2012) Estimating space and space–time covariance functions: a weighted composite likelihood approach. J Am Stat Assoc 107:268–280
    Bonat WH, Jørgensen B (2016) Multivariate covariance generalized linear models. J R Stat Soc Ser C Appl Stat 65(5):649–675
    Chen D, Menegatto VA, Sun X (2003) A necessary and sufficient condition for strictly positive definite functions on spheres. Proc Am Math Soc 131(9):2733–2740 (electronic)
    Chilès J, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, New York
    Clarke J, Alegría A, Porcu E (2018) Regularity properties and simulations of Gaussian random fields on the sphere cross time. Electron J Stat 12:399–426. arXiv:1611.02851
    Dai F, Xu Y (2013) Approximation theory and harmonic analysis on spheres and balls. Springer monographs in mathematics. Springer, New York
    Daley DJ, Porcu E (2014) Dimension walks and Schoenberg spectral measures. Proc Am Math Soc 142(5):1813–1824
    Daley DJ, Porcu E, Bevilacqua M (2015) Classes of compactly supported covariance functions for multivariate random fields. Stoch Environ Res Risk Assess 29(4):1249–1263
    De Iaco S, Posa D (2018) Strict positive definiteness in geostatistics. Stoch Environ Res Risk Assess 32(3):577–590
    De Iaco S, Myers DE, Posa D (2001) Space–time analysis using a general product–sum model. Stat Probab Lett 52(1):21–28
    Estrade A, Fariñas A, Porcu E (2017) Characterization theorems for covariance functions on the n-dimensional sphere across time. Technical report, University Federico Santa Maria, MAP5 2016-34 [hal-01417668]
    Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4):1327–1349
    Gregori P, Porcu E, Mateu J, Sasvári Z (2008) On potentially negative space time covariances obtained as sum of products of marginal ones. Ann Inst Stat Math 60(4):865–882
    Jones RH (1963) Stochastic processes on a sphere. Ann Math Stat 34:213–218
    Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, Cambridge
    Kleiber W, Porcu E (2015) Nonstationary matrix covariances: compact support, long range dependence and quasi-arithmetic constructions. Stoch Environ Res Risk Assess 29(1):193–204
    Lang A, Schwab C (2015) Isotropic random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. Ann Appl Probab 25:3047–3094
    Marinucci D, Peccati G (2011) Random fields on the sphere, representation, limit theorems and cosmological applications. Cambridge University Press, New York
    Menegatto VA (1995) Strictly positive definite kernels on the circle. Rocky Mt J Math 25(3):1149–1163
    Menegatto VA, Oliveira CP, Peron AP (2006) Strictly positive definite kernels on subsets of the complex plane. Comput Math Appl 51(8):1233–1250
    Møller J, Nielsen M, Porcu E, Rubak E (2018) Determinantal point process models on the sphere. Bernoulli 24(2):1171–1201. arXiv:1607.03675
    Pan J, Mackenzie G (2003) On modelling mean-covariance structures in longitudinal studies. Biometrika 90(1):239–244
    Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space–time covariance functions. Stoch Environ Res Risk Assess 21(2):113–122
    Porcu E, Daley DJ, Buhmann M, Bevilacqua M (2013) Radial basis functions with compact support for multivariate geostatistics. Stoch Environ Res Risk Assess 27(4):909–922
    Porcu E, Bevilacqua M, Genton MG (2016) Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J Am Stat Assoc 111(514):888–898
    Porcu E, Alegria A, Furrer R (2017) Modeling temporally evolving and spatially globally dependent data. Int Stat Rev. arXiv:1706.09233
    Pourahmadi M (1999) Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3):677–690
    Pourahmadi M (2011) Covariance estimation: the GLM and regularization perspectives. Stat Sci 26(3):369–387
    Schoenberg IJ (1942) Positive definite functions on spheres. Duke Math J 9:96–108
    Serra J (1968) Les structures gigognes: morphologie mathématique et interprétation métallogénique. Miner Depos 3:135–154
    Soubeyrand S, Enjalbert J, Sache I (2008) Accounting for roughness of circular processes: using Gaussian random process to model the anisotropic spread of airbone plant disease. Theor Popul Biol 73(1):92–103
    Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin
    Yakhot V, Orszag SA, She Z-S (1989) Space–time correlations in turbulence: kinematical versus dynamical effects. Phys Fluids A 1(2):184–186