Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A unified framework of density-based clustering for semi-supervised classification (2018)

  • Authors:
  • USP affiliated authors: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
  • USP Schools: ICMC
  • DOI: 10.1145/3221269.3223037
  • Subjects: APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE PADRÕES; ALGORITMOS ÚTEIS E ESPECÍFICOS
  • Keywords: Semi-supervised classification; density-based clustering
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Conference titles: International Conference on Scientific and Statistical Database Management - SSDBM
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1145/3221269.3223037 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1145/3221269.3223037 (Fonte: Unpaywall API)

    Título do periódico: Proceedings of the 30th International Conference on Scientific and Statistical Database Management - SSDBM '18

    ISSN:



      Não possui versão em Acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GERTRUDES, Jadson Castro; ZIMEK, Arthur; SANDER, Jörg; CAMPELLO, Ricardo José Gabrielli Barreto. A unified framework of density-based clustering for semi-supervised classification. Anais.. New York: ACM, 2018.Disponível em: DOI: 10.1145/3221269.3223037.
    • APA

      Gertrudes, J. C., Zimek, A., Sander, J., & Campello, R. J. G. B. (2018). A unified framework of density-based clustering for semi-supervised classification. In Proceedings. New York: ACM. doi:10.1145/3221269.3223037
    • NLM

      Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified framework of density-based clustering for semi-supervised classification [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1145/3221269.3223037
    • Vancouver

      Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified framework of density-based clustering for semi-supervised classification [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1145/3221269.3223037

    Referências citadas na obra
    M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. 1999. OPTICS: ordering points to identify the clustering structure. In Proc. ACM SIGMOD. 49--60.
    A. J. L. Batista, R. J. G. B. Campello, and J. Sander. 2016. Active Semi-Supervised Classification Based on Multiple Clustering Hierarchies. In Proc. DSAA. 11--20.
    M. Belkin, P. Niyogi, and V. Sindhwani. 2006. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. JMLR 7 (2006), 2399--2434.
    C. Böhm and C. Plant. 2008. Hissclu: a hierarchical density-based method for semi-supervised clustering. In Proc. EDBT. 440--451.
    R. J. G. B. Campello, D. Moulavi, and J. Sander. 2013. Density-based clustering based on hierarchical density estimates. In Proc. PAKDD. 160--172.
    R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander. 2013. A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Min. Knowl. Discov. 27, 3 (2013), 344--371.
    R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander. 2015. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM TKDD 10, 1 (2015), 1--51.
    O. Chapelle, B. Schölkopf, and A. Zien. 2006. Introduction to Semi-Supervised Learning. MIT Press, Cambridge, MA, Chapter 1, 1--12.
    C. A. R. de Sousa. 2015. An overview on the Gaussian Fields and Harmonic Functions method for semi-supervised learning. In Proc. IJCNN. 1--8.
    C. A. R. de Sousa, S. O. Rezende, and G. E. A. P. A. Batista. 2013. Influence of Graph Construction on Semi-supervised Learning. In Proc. ECML PKDD. III. 160--175.
    M. C. P. de Souto, I. G. Costa, D. S. A. de Araujo, T. B. Ludermir, and A. Schliep. 2008. Clustering cancer gene expression data: a comparative study. BMC Bioinformatics 9 (2008).
    J. Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. JMLR 7 (2006), 1--30.
    M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. KDD. 226--231.
    F. Fontaine, M. Pastor, I. Zamora, and F. Sanz. 2005. Anchor-GRIND: Filling the Gap between Standard 3D QSAR and the GRid-INdependent Descriptors. J. Med.Chem. 48, 7 (2005), 2687--2694.
    M. Friedman. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Statist. Assoc. 32, 200 (1937), 675--701.
    A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers, D. Mendez, P. Mutowo-Meullenet, F. Atkinson, L. J. Bellis, E. Cibrián-Uhalte, M. Davies, N. Dedman, A. Karlsson, M. P. Magariños, J. P. Overington, G. Papadatos, I. Smit, and A. R. Leach. 2017. The ChEMBL database in 2017. Nucleic Acids Res. 45 (2017), D945--D954.
    J. A. Hartigan. 1975. Clustering Algorithms. Wiley.
    A. K. Jain and R. C. Dubes. 1988. Algorithms for Clustering Data. Prentice-Hall.
    H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek. 2011. Density-based clustering. WIREs: Data Mining and Knowledge Discovery 1, 3 (2011), 231--240.
    H.-P. Kriegel, E. Schubert, and A. Zimek. 2017. The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowl. Inf. Syst. 52, 2 (2017), 341--378.
    L. Lelis and J. Sander. 2009. Semi-supervised Density-Based Clustering. In Proc. IEEE ICDM. 842--847.
    J. Li, J. Sander, R. J. G. B. Campello, and A. Zimek. 2014. Active learning strategies for semi-supervised DBSCAN. In Proc. Canadian AI. 179--190.
    M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics.uci.edu/ml
    W. Liu and S.-F. Chang. 2009. Robust multi-class transductive learning with graphs. In Proc. IEEE CVPR. 381--388.
    D. Moulavi. 2014. Finding, Evaluating and Exploring Clustering Alternatives Unsupervised and Semi-supervised. Ph.D. Dissertation. University of Alberta.
    P. Nemenyi. 1962. Distribution-free multiple comparisons. In Biometrics, Vol. 18. 263.
    O. M. Rivera-Borroto, Y. Marrero Ponce, J. M. Garcia-de-la Vega, and R. d. C. GrauÁlbalo. 2011. Comparison of Combinatorial Clustering Methods on Pharmacological Data Sets Represented by Machine Learning-Selected Real Molecular Descriptors. J. Chem. Inf. Model. 51 (2011), 3036--3049.
    M. Sokolova and G. Lapalme. 2009. A systematic analysis of performance measures for classification tasks. Inf Process Manag 45, 4 (2009), 427--437.
    J. J. Sutherland, L. A. O'Brien, and D. F. Weaver. 2004. A Comparison of Methods for Modeling Quantitative Structure-Activity Relationships. J. Med.Chem. 47, 22 (2004), 5541--5554.
    M. Szummer and T. S. Jaakkola. 2002. Information Regularization with Partially Labeled Data. In Proc. NIPS. 1025--1032.
    J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. 2014. OpenML: networked science in machine learning. ACM SIGKDD Expl. Newsletter 15, 2 (2014), 49--60.
    K. Y. Yeung, M. Medvedovic, and R. E. Bumgarner. 2003. Clustering gene-expression data with repeated measurements. Genome Biol 4, 5 (2003), R34.
    L. Zhao, S. Luo, M. Tian, C. Shao, and H. Ma. 2006. Combining Label Information and Neighborhood Graph for Semi-supervised Learning. In Proc. ISNN - Advances in Neural Networks. 482--488.
    X. Zhu. 2005. Semi-Supervised Learning Literature Survey --- TR1530. Technical Report. University of Wisconsin, Madison.
    X. Zhu, Z. Ghahramani, and J. D. Lafferty. 2003. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. In Proc. ICML. 912--919.
    X. Zhu and A. B. Goldberg. 2009. Introduction to Semi-Supervised Learning. Morgan & Claypool Publishers.