Ver registro no DEDALUS
Exportar registro bibliográfico



Maternal exposure to iodine excess throughout pregnancy and lactation induces hypothyroidism in adult male rat offspring (2017)

  • Authors:
  • USP affiliated authors: NUNES, MARIA TEREZA - ICB
  • USP Schools: ICB
  • DOI: 10.1038/s41598-017-15529-9
  • Subjects: FISIOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-017-15529-9 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-017-15529-9 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:

    • Outras alternativas de URLs em Acesso Aberto:

        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher

        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SERRANO-NASCIMENTO, Caroline; SALGUEIRO, Rafael Barrera; PANTALEÃO, Thiago; COSTA, Vânia Maria Corrêa da; NUNES, Maria Tereza. Maternal exposure to iodine excess throughout pregnancy and lactation induces hypothyroidism in adult male rat offspring. Scientific Reports, London, Nature Publishing Group, v. 7, n. 1, p. 1-12, 2017. Disponível em: < > DOI: 10.1038/s41598-017-15529-9.
    • APA

      Serrano-Nascimento, C., Salgueiro, R. B., Pantaleão, T., Costa, V. M. C. da, & Nunes, M. T. (2017). Maternal exposure to iodine excess throughout pregnancy and lactation induces hypothyroidism in adult male rat offspring. Scientific Reports, 7( 1), 1-12. doi:10.1038/s41598-017-15529-9
    • NLM

      Serrano-Nascimento C, Salgueiro RB, Pantaleão T, Costa VMC da, Nunes MT. Maternal exposure to iodine excess throughout pregnancy and lactation induces hypothyroidism in adult male rat offspring [Internet]. Scientific Reports. 2017 ; 7( 1): 1-12.Available from:
    • Vancouver

      Serrano-Nascimento C, Salgueiro RB, Pantaleão T, Costa VMC da, Nunes MT. Maternal exposure to iodine excess throughout pregnancy and lactation induces hypothyroidism in adult male rat offspring [Internet]. Scientific Reports. 2017 ; 7( 1): 1-12.Available from:

    Referências citadas na obra
    Carvalho, D. P. & Dupuy, C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol, (2017).
    Portulano, C., Paroder-Belenitsky, M. & Carrasco, N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev 35, 106–149, (2014).
    Dai, G., Levy, O. & Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 379, 458–460, (1996).
    Rasmussen, L. B., Andersen, S., Ovesen, L. & Laurberg, P. In Comprehensive Handbook of Iodine (eds Gerard, N. Burrow & Ronald Watson) 332–337 (Academic Press, 2009).
    Zimmermann, M. B. & Andersson, M. Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev 70, 553–570, (2012).
    Zimmermann, M. B. The effects of iodine deficiency in pregnancy and infancy. Paediatr Perinat Epidemiol 26(Suppl 1), 108–117, (2012).
    Stinca, S. et al. Moderate-to-Severe Iodine Deficiency in the “First 1000 Days” Causes More Thyroid Hypofunction in Infants Than in Pregnant or Lactating Women. J Nutr 147, 589–595, (2017).
    Lee, S. Y. & Pearce, E. N. Reproductive endocrinology: Iodine intake in pregnancy–even a little excess is too much. Nat Rev Endocrinol 11, 260–261, (2015).
    Serrano-Nascimento, C. et al. Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats. Endocrine connections. (2017).
    Shi, X. et al. Optimal and safe upper limits of iodine intake for early pregnancy in iodine-sufficient regions: a cross-sectional study of 7190 pregnant women in China. J Clin Endocrinol Metab 100, 1630–1638, (2015).
    Zhang, L. et al. Effect of maternal excessive iodine intake on neurodevelopment and cognitive function in rat offspring. BMC neuroscience 13, 121, (2012).
    Connelly, K. J. et al. Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. The Journal of pediatrics 161, 760–762, (2012).
    Riddihough, G. & Zahn, L. M. Epigenetics. What is epigenetics? Introduction. Science (New York, N.Y.) 330, 611, (2010).
    Loh, K. M. & Lim, B. Epigenetics: Actors in the cell reprogramming drama. Nature 488, 599–600, (2012).
    Marx, V. Epigenetics: Reading the second genomic code. Nature 491, 143–147, (2012).
    Thomas Jde, V. & Collett-Solberg, P. F. Perinatal goiter with increased iodine uptake and hypothyroidism due to excess maternal iodine ingestion. Horm Res 72, 344–347, (2009).
    De Wolf, D. et al. Congenital hypothyroid goiter and amiodarone. Acta Paediatr Scand 77, 616–618 (1988).
    Mathers, J. C. Early nutrition: impact on epigenetics. Forum Nutr 60, 42–48, (2007).
    Gicquel, C., El-Osta, A. & Le Bouc, Y. Epigenetic regulation and fetal programming. Best Pract Res Clin Endocrinol Metab 22, 1–16, (2008).
    Sinclair, K. D., Lea, R. G., Rees, W. D. & Young, L. E. The developmental origins of health and disease: current theories and epigenetic mechanisms. Soc Reprod Fertil Suppl 64, 425–443 (2007).
    Joss-Moore, L. A. & Lane, R. H. The developmental origins of adult disease. Curr Opin Pediatr 21, 230–234 (2009).
    Nishiyama, S. et al. Transient hypothyroidism or persistent hyperthyrotropinemia in neonates born to mothers with excessive iodine intake. Thyroid 14, 1077–1083, (2004).
    Carswell, F., Kerr, M. M. & Hutchison, J. H. Congenital goitre and hypothyroidism produced by maternal ingestion of iodides. Lancet 1, 1241–1243 (1970).
    Shupnik, M. A., Chin, W. W., Habener, J. F. & Ridgway, E. C. Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. J Biol Chem 260, 2900–2903 (1985).
    Arrojo, E. D. R., Fonseca, T. L., Werneck-de-Castro, J. P. & Bianco, A. C. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 1830, 3956–3964, (2013).
    Guadano-Ferraz, A., Escamez, M. J., Rausell, E. & Bernal, J. Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems. J Neurosci 19, 3430–3439 (1999).
    Silva, F. G., Giannocco, G., Santos, M. F. & Nunes, M. T. Thyroid hormone induction of actin polymerization in somatotrophs of hypothyroid rats: potential repercussions in growth hormone synthesis and secretion. Endocrinology 147, 5777–5785, (2006).
    Chiamolera, M. I. & Wondisford, F. E. Minireview: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 150, 1091–1096, (2009).
    Kahaly, G. J. & Dillmann, W. H. Thyroid hormone action in the heart. Endocr Rev 26, 704–728, (2005).
    Hu, L. W., Benvenuti, L. A., Liberti, E. A., Carneiro-Ramos, M. S. & Barreto-Chaves, M. L. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285, R1473–1480, (2003).
    Fernandez, L. P., Lopez-Marquez, A. & Santisteban, P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 11, 29–42, (2015).
    Kambe, F., Nomura, Y., Okamoto, T. & Seo, H. Redox regulation of thyroid-transcription factors, Pax-8 and TTF-1, is involved in their increased DNA-binding activities by thyrotropin in rat thyroid FRTL-5 cells. Mol Endocrinol 10, 801–812, (1996).
    Serrano-Nascimento, C. et al. Excess iodide downregulates Na(+)/I(−) symporter gene transcription through activation of PI3K/Akt pathway. Mol Cell Endocrinol 426, 73–90, (2016).
    Fedorova, M., Bollineni, R. C. & Hoffmann, R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass spectrometry reviews 33, 79–97, (2014).
    Leung, A. M. & Braverman, L. E. Consequences of excess iodine. Nat Rev Endocrinol 10, 136–142, (2014).
    Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23, 38–89, (2002).
    Siedlecki, P. & Zielenkiewicz, P. Mammalian DNA methyltransferases. Acta Biochim Pol 53, 245–256 (2006).
    Tate, P. H. & Bird, A. P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3, 226–231 (1993).
    Sui, L. & Li, B. M. Effects of perinatal hypothyroidism on regulation of reelin and brain-derived neurotrophic factor gene expression in rat hippocampus: Role of DNA methylation and histone acetylation. Steroids 75, 988–997, (2010).
    Peng, S. et al. The gene expressions of DNA methylation/demethylation enzymes and cytochrome c oxidase subunit 4 in skeletal muscle of thyroidectomized rats. Afr. J. Biotechnol. 10, 730–733 (2011).
    Cyr, A. R. & Domann, F. E. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15, 551–589, (2011).
    Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080, (2001).
    Kimura, H. Histone modifications for human epigenome analysis. J Hum Genet 58, 439–445, (2013).
    Cordeiro, A. et al. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice. J Endocrinol 216, 181–193, (2013).
    Haddad, F., Jiang, W., Bodell, P. W., Qin, A. X. & Baldwin, K. M. Cardiac myosin heavy chain gene regulation by thyroid hormone involves altered histone modifications. Am J Physiol Heart Circ Physiol 299, H1968–1980, (2010).
    Gluckman, P. D., Hanson, M. A. & Low, F. M. The role of developmental plasticity and epigenetics in human health. Birth defects research. Part C, Embryo today: reviews 93, 12–18, (2011).
    Li, N., Jiang, Y., Shan, Z. & Teng, W. Prolonged high iodine intake is associated with inhibition of type 2 deiodinase activity in pituitary and elevation of serum thyrotropin levels. Br J Nutr 107, 674–682, (2012).
    Calil-Silveira, J. et al. Underlying Mechanisms of Pituitary-Thyroid Axis Function Disruption by Chronic Iodine Excess in Rats. Thyroid 26, 1488–1498, (2016).
    Marassi, M. P. et al. Sexual dimorphism in thyroid function and type 1 iodothyronine deiodinase activity in pre-pubertal and adult rats. The Journal of endocrinology 192, 121–130, (2007).