Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Comparison of the effect of root surface modification with citric acid, EDTA, and aPDT on adhesion and proliferation of human gingival fibroblasts and osteoblasts: an in vitro study (2018)

  • Authors:
  • USP affiliated authors: SANT ANA, ADRIANA CAMPOS PASSANEZI - FOB ; GREGHI, SEBASTIAO LUIZ AGUIAR - FOB ; REZENDE, MARIA LUCIA RUBO DE - FOB ; ZANGRANDO, MARIANA SCHUTZER RAGGHIANTI - FOB ; OLIVEIRA, RODRIGO CARDOSO DE - FOB ; DAMANTE, CARLA ANDREOTTI - FOB
  • USP Schools: FOB; FOB; FOB; FOB; FOB; FOB
  • DOI: 10.1007/s10103-017-2379-3
  • Subjects: PERIODONTO DE PROTEÇÃO; TERAPIA FOTODINÂMICA; OSTEOBLASTO; ÁCIDOS ACÍCLICOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10103-017-2379-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10103-017-2379-3 (Fonte: Unpaywall API)

    Título do periódico: Lasers in Medical Science

    ISSN: 0268-8921,1435-604X



      Não possui versão em Acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERREIRA, Rafael; BARROS, Renato Taddei de Toledo; KARAM, Paula Stephania Brandão Hage; et al. Comparison of the effect of root surface modification with citric acid, EDTA, and aPDT on adhesion and proliferation of human gingival fibroblasts and osteoblasts: an in vitro study. Lasers in Medical Science, London, Springer, v. 33, n. 3, p. 533-538, 2018. Disponível em: < http://dx.doi.org/10.1007/s10103-017-2379-3 > DOI: 10.1007/s10103-017-2379-3.
    • APA

      Ferreira, R., Barros, R. T. de T., Karam, P. S. B. H., Sant’Ana, A. C. P., Greghi, S. L. A., Rezende, M. L. R. de, et al. (2018). Comparison of the effect of root surface modification with citric acid, EDTA, and aPDT on adhesion and proliferation of human gingival fibroblasts and osteoblasts: an in vitro study. Lasers in Medical Science, 33( 3), 533-538. doi:10.1007/s10103-017-2379-3
    • NLM

      Ferreira R, Barros RT de T, Karam PSBH, Sant’Ana ACP, Greghi SLA, Rezende MLR de, Zangrando MSR, Rodrigo Cardoso de Oliveira, Damante CA. Comparison of the effect of root surface modification with citric acid, EDTA, and aPDT on adhesion and proliferation of human gingival fibroblasts and osteoblasts: an in vitro study [Internet]. Lasers in Medical Science. 2018 ; 33( 3): 533-538.Available from: http://dx.doi.org/10.1007/s10103-017-2379-3
    • Vancouver

      Ferreira R, Barros RT de T, Karam PSBH, Sant’Ana ACP, Greghi SLA, Rezende MLR de, Zangrando MSR, Rodrigo Cardoso de Oliveira, Damante CA. Comparison of the effect of root surface modification with citric acid, EDTA, and aPDT on adhesion and proliferation of human gingival fibroblasts and osteoblasts: an in vitro study [Internet]. Lasers in Medical Science. 2018 ; 33( 3): 533-538.Available from: http://dx.doi.org/10.1007/s10103-017-2379-3

    Referências citadas na obra
    Lula ECO, Almeida LJS, Alves CMC, Monteiro-Neto V, Ribeiro CCC (2011) Partial caries removal in primary teeth: association of clinical parameters with microbiological status. Caries Res 45(3):275–280
    Schwendicke F, Meyer-Lueckel H, Dörfer C, Paris S (2013) Attitudes and behaviour regarding deep dentin caries removal: a survey among German dentists. Caries Res 47(6):566–573
    Katz CR, de Andrade Mdo R, Lira SS, Ramos Vieira EL, Heimer MV (2013) The concepts of minimally invasive dentistry and its impact on clinical practice: a survey with a group of Brazilian professionals. Int Dent J 63(2):85–90
    Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, Ebisu S (2007) Antibacterial effect of chlorhexidine-containing glass ionomer cement in vivo: a pilot study. Caries Res 41(2):102–107
    Mittal S, Soni H, Sharma DK, Mittal K, Pathania V, Sharma S (2015) Comparative evaluation of the antibacterial and physical properties of conventional glass ionomer cement containing chlorhexidine and antibiotics. J Int Soc Prev Community Dent 5(4):268–275
    Araújo PV, Correia-Silva Jde F, Gomez RS, Massara Mde L, Cortes ME, Poletto LT (2015) Antimicrobial effect of photodynamic therapy in carious lesions in vivo, using culture and real-time PCR methods. Photodiagn Photody Ther 12(3):401–407
    Diniz IM, Horta ID, Azevedo CS, Elmadjian TR, Matos AB, Simionato MR, Marques MM (2015) Antimicrobial photodynamic therapy: a promise candidate for caries lesions treatment. Photodiagn Photodyn Ther 12(3):511–518
    Guglielmi CA, Simionato MR, Ramalho KM, Imparato JC, Pinheiro SL, Luz MA (2011) Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions. J Biomed Optics 16(8):088003
    Melo MA (2014) Photodynamic antimicrobial chemotherapy as a strategy for dental caries: building a more conservative therapy in restorative dentistry. Photomed Laser Surg 32(11):589–591
    Melo MA, Rolim JP, Zanin IC, Silva JJ, Paschoal AR, Ayala AP, Rodrigues LK (2014) A comparative study of the photosensitizer penetration into artificial caries lesions in dentin measured by the confocal Raman microscopy. Photochem Photobiol 90(1):183–188
    Cieplik F, Buchalla W, Hellwig E, Al-Ahmad A, Hiller KA, Maisch T, Karygianni L (2017) Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions—a systematic review. Photodiagn Photodyn Ther 18:54–62
    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28
    Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86(8):694–707
    Sridharan G, Shankar AA (2012) Toluidine blue: a review of its chemistry and clinical utility. J Oral Maxillofac Pathol 16(2):251–255
    Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656
    Steiner-Oliveira C, Longo PL, Aranha AC, Ramalho KM, Mayer MP, de Paula Eduardo C (2015) Randomized in vivo evaluation of photodynamic antimicrobial chemotherapy on deciduous carious dentin. J Biomed Optics 20(10):108003
    Neves PA, Lima LA, Rodrigues FC, Leitão TJ, Ribeiro CC (2016) Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal. Braz Oral Res 30(1):e47
    Baptista A, Kato IT, Prates RA, Suzuki LC, Raele MP, Freitas AZ, Ribeiro MS (2012) Antimicrobial photodynamic therapy as a strategy to arrest enamel demineralization: a short-term study on incipient caries in a rat model. Photochem Photobiol 88(3):584–589
    Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo MJ, Rezusta A (2015) In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 15:187
    Rolim JP, de-Melo MA, Guedes SF, Albuquerque-Filho FB, de Souza JR, Nogueira NA, Zanin IC, Rodrigues LK (2012) The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B 106:40–46
    Schneider M, Kirfel G, Berthold M, Frentzen M, Krause F, Braun A (2012) The impact of antimicrobial photodynamic therapy in an artificial biofilm model. Lasers Med Sci 27(3):615–620
    de Freitas-Pontes KM, Gomes CE, de Carvalho BM, Sabóia Rde S, Garcia BA (2014) Photosensitization of in vitro biofilms formed on denture base resin. J Prosthet Dent 112(3):632–637
    Sissons CH (1997) Artificial dental plaque biofilm model systems. Adv Dent Res 11(1):110–126
    McBain AJ, Sissons C, Ledder RG, Sreenivasan PK, De Vizio W, Gilbert P (2005) Development and characterization of a simple perfused oral microcosm. J Appl Microbiol 98(3):624–634
    Silva TC, Pereira AF, Exterkate RA, Bagnato VS, Buzalaf MA, Machado MA, Ten Cate JM, Crielaard W, Deng DM (2012) Application of an active attachment model as a high-throughput demineralization biofilm model. J Dent 40(1):41–47
    Deng DM, Hoogenkamp MA, Ten Cate JM, Crielaard W (2009) Novel metabolic activity indicator in Streptococcus mutans biofilms. J Microbiol Methods 77(1):67–71
    Dige I, Nilsson H, Kilian M, Nyvad B (2007) In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115(6):459–467
    Zaura-Arite E, van Marle J, ten Cate JM (2001) Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80(5):1436–1440
    Sim CP, Dashper SG, Reynolds EC (2016) Oral microbial biofilm models and their application to the testing of anticariogenic agents. J Dent 50:1–11
    de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infec Immun 68(9):4839–4849
    Antunes LC, Ferreira RB, Buckner MM, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156(Pt 8):2271–2282
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322
    Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112(10):1466–1477
    Exterkate RA, Crielaard W, Ten Cate JM (2010) Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries Res 44(4):372–379
    Arthur RA, Waeiss RA, Hara AT, Lippert F, Eckert GJ, Zero DT (2013) A defined-multispecies microbial model for studying enamel caries development. Caries Res 47(4):318–324
    Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33(4):248–255
    Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90(3):294–303
    Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS (2016) Influence of the inoculum source on the cariogenicity of in vitro microcosm biofilms. Caries Res 50(2):97–103
    Anderson GG, O'Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105
    Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314
    Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 110(52):21130–21135
    Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26(4):281–287
    Montoya C, Arango-Santander S, Peláez-Vargas A, Arola D, Ossa EA (2015) Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol 60(12):1811–1820