Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil (2018)

  • Authors:
  • USP affiliated authors: SALLUM, MARIA ANICE MUREB - FSP
  • USP Schools: FSP
  • DOI: 10.1038/s41598-018-25344-5
  • Subjects: MALÁRIA; FRAGMENTOS FLORESTAIS; DESMATAMENTO; ASSENTAMENTO RURAL; PRODUTOS FLORESTAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-25344-5 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-018-25344-5 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Evidência: oa journal (via doaj)
      • Licença: cc-by
      • Versão: publishedVersion
      • Tipo de hospedagem: publisher


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher





    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CHAVES, Leonardo Suveges Moreira; CONN, Jan E; LÓPEZ, Rossana Verónica Mendoza; SALLUM, Maria Anice Mureb. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Scientific Reports, London, v. 8, n. 1, p. 7077 [11 ], 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-25344-5 > DOI: 10.1038/s41598-018-25344-5.
    • APA

      Chaves, L. S. M., Conn, J. E., López, R. V. M., & Sallum, M. A. M. (2018). Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Scientific Reports, 8( 1), 7077 [11 ]. doi:10.1038/s41598-018-25344-5
    • NLM

      Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil [Internet]. Scientific Reports. 2018 ; 8( 1): 7077 [11 ].Available from: http://dx.doi.org/10.1038/s41598-018-25344-5
    • Vancouver

      Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil [Internet]. Scientific Reports. 2018 ; 8( 1): 7077 [11 ].Available from: http://dx.doi.org/10.1038/s41598-018-25344-5

    Referências citadas na obra
    Sawyer, D. R. Malaria on the Amazon frontier: economic and social aspects of transmission and control. Southeast Asian J. Trop. Med. Public Health 17(3), 342–5 (1986).
    Valle, D. & Clark, J. Conservation efforts may increase malaria burden in the Brazilian Amazon. PLoS One 8(3), e57519 (2013).
    Olson, S. H., Gangnon, R., Silveira, G. A. & Patz, J. A. Deforestation and malaria in Mancio Lima county, Brazil. Emerging Infect. Dis. 16(7), 1108 (2010).
    Bauch, S. C., Birkenbach, A. M., Pattanayak, S. K. & Sills, E. O. Public health impacts of ecosystem change in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 112(24), 7414–9 (2015).
    Terrazas, W. C. M. et al. Deforestation, drainage network, indigenous status, and geographical differences of malaria in the State of Amazonas. Malaria J. 14(1), 379 (2015).
    Sawyer, D. R. Frontier malaria in the Amazon region of Brazil: types of malaria situations and some implications for control. Brasília: PHO/WHO/TDR (1988).
    Lima, J. M. T., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Phil. Trans. R. Soc. B. 372(1722), 20160125 (2017).
    Fernandes, V. B. & Reydon, B. P. Sobre o conceito de fronteira. In: “Desenvolvimento sem desmatamento”. Policy in focus – Centro Internacional de Políticas para o Crescimento Inclusivo (IPC-IG), Programa das Nações Unidas para o Desenvolvimento. Agosto, No. 29 (2014).
    UNCTAD – United Nations Conference on Trade and Development. 2015. State of Commodity Dependence. Special Unit on Commodities. United Nations, New York and Geneva (2014).
    Becker, B. K., Geopolítica da Amazônia. Conferência do Instituto de Estudos Avançados da USP. Abril, 19(53) (2005).
    Sasaki, N. & Putz, F. E. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv. Lett. 2(5), 226–32 (2009).
    Turner, M., Donato, D. & Romme, W. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc. Ecol. 28(6), 1081–97 (2013).
    Mitchell, M. et al. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 30(4), 190–8 (2015).
    CPT – Comissão Pastoral da Terra. Por debaixo da floresta: Amazônia paraense saqueada com trabalho escravo. Coordenação: Centro de Defesa da Vida e dos Direitos Humanos Carmen Bascarán. Projeto Raice – Rede de Ação Integrada para Combater a Escravidão, Fase 1: Diagnóstico. Araguaína, Tocantins, 90 p. (2016).
    Sant’Anna, A. A. & Young, C. E. F. Property Rights. Deforestation and Rural Conflicts in the Amazon. Economia Aplicada v. 14, n. 3, 377–387 (2010).
    L’Roe, J., Rausch, L., Munger, J. & Gibbs, H. Mapping properties to monitor forests: Landholder response to a large environmental registration program in the Brazilian Amazon. Land Use Policy 57, 193–203 (2016).
    Young, C. E. F. Desmatamento e desemprego rural na Mata Atlântica. Floresta e Ambiente v. 13(No. 2), 75–88 (2006).
    Sant’Anna, A. A. Land inequality and deforestation in the Brazilian Amazon. Environ. Dev. Econ. 22(1), 1–25 (2017).
    IBGE – Instituto Brasileiro de Geografia e Estatística. Produção da Extração Vegetal e da Silvicultura. Rio de Janeiro. v. 30, p. 1–48 (2015).
    Lefèvre, T. et al. Beyond nature and nurture: phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. Am. J. Trop. M. 81(6), 1023–1029 (2009).
    Santos, L. M., Gama, R. A., Eiras, A. E. & Fonseca, C. G. Genetic differences based on AFLP markers in the mosquito species Anopheles darlingi collected in versus near houses in the region of Porto Velho, RO, Brazil. Genet. Mol. Res. 9(4), 2254–2262 (2010).
    Singer, B. H. & De Castro, M. C. Agricultural colonization and malaria on the Amazon frontier. Ann. N. Y. Acad. Sci. Dec. 954, 184–222 (2001).
    Castro, M. C., Monte-Mor, R. L., Sawyer, D. O. & Singer, B. H. Malaria risk on the Amazon Frontier. Proc. Natl. Acad. Sci. USA 103, 2452–2457 (2006).
    Carrasco-Escobar, G. et al. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci. Rep. 7(1), 8082 (2017).
    Galardo, A. K. R. et al. Seasonal abundance of anopheline mosquitoes and their association with rainfall and malaria along the Matapi River, Amapi, Brazil. Med. Vet. Entomol. 23(4), 335–49 (2009).
    Barros, F. S. M., Arruda, M. E., Gurgel, H. C. & Honorio, N. A. Spatial clustering and longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a river of the Amazon: the importance of the forest fringe and of obstructions to flow in frontier malaria. B. Entomol. Res. 101(06), 643–658 (2011).
    Valle, D. & Lima, J. M. T. Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model. Malar. J. 13(1), 443 (2014).
    Walsh, J. F., Molyneux, D. H. & Birley, M. H. Deforestation: effects on vector-borne disease. Parasitol. 106, Suppl, S55–75 (1993).
    Lana, R. M. et al. Socioeconomic and demographic characterization of an endemic malaria region in Brazil by multiple correspondence analysis. Malar. J. 16(1), 397 (2017).
    Castro, M. C. & Singer B. H. Malária in the Brazilian Amazon. In: Water and Sanitation-Related Diseases and the Environment: Challenges, Interventions and Preventive Measures 19 p. (2011).
    Angelo, J. R. et al. The role of spatial mobility in malaria transmission in the Brazilian Amazon: The case of Porto Velho municipality, Rondônia, Brazil (2010–2012). PloS One 12(2), e0172330 (2017).
    Costa, S. & Brondizio, E. Dependência Inter-urbana entre as Cidades Amazônicas: Crescimento Urbano, Deficiências em Infra-estrutura e Redes Sociais. REDES 14(3), 211–34 (2009).
    Barros, F. S. & Honório, N. A. Deforestation and malaria on the amazon frontier: larval clustering of Anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am. J. Trop. Med. Hyg. 93(5), 939–53 (2015).
    Hiwat, H. & Bretas, G. Ecology of Anopheles darlingi Root with respect to vector importance: a review. Parasit. Vectors 4, 177 (2011).
    Yasuoka, J. & Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–60 (2007).
    Gil, L. H. S., Rodrigues, M. D. S. & Katsuragawa, T. H. Seasonal distribution of malaria vectors (Diptera: Culicidae) in rural localities of Porto Velho, Rondônia, Brazilian Amazon. Revi. I. Med. Trop. São Paulo 57(3), 263–267 (2015).
    Kweka, E. J., Kimaro, E. E. & Munga, S. Effect of Deforestation and Land Use Changes on Mosquito Productivity and Development in Western Kenya Highlands: Implication for Malaria Risk. Front Public Health 4, 238 (2016).
    Vittor, A. Y. et al. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 74(1), 3–11 (2006).
    Asner, G. P. et al. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 103(34), 12947–50 (2006).
    Da Silva C. A. & De Souza, C. M. Jr. Comparação entre imagens Landsat ETM+e MODIS/Terra para detecção de incrementos de desmatamento na região do Baixo Acre. Revista Brasileira de Cartografia 2(57) (2005).
    De Souza Jr, C. M., Hayashi, S. & Veríssimo, A. Near real-time deforestation detection for enforcement of forest reserves in Mato Grosso. In Proceedings of Land Governance in Support of the Millennium Development Goals: Responding to New Challenges, World Bank Conference, Washington, DC (2009).
    Zhu, S., Zhang, H., Liu, R., Cao, Y. & Zhang, G. Comparison of Sampling Designs for Estimating Deforestation from Landsat TM and MODIS Imagery: A Case Study in Mato Grosso, Brazil. Sci. World J. 2014, 10 (2014).
    Broich, M., Stehman, S., Hansen, M., Potapov, P. & Shimabukuro, Y. A comparison of sampling designs for estimating deforestation from Landsat imagery: A case study of the Brazilian Legal Amazon. Remote Sen. Environ. 113(11), 2448–54 (2009).
    Adde, A. et al. Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data. PLoS One 11(10), e0164685 (2016).
    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5(2), 024002 (2010).
    Ladeia-Andrade, S. et al. Naturally acquired antibodies to merozoite surface protein (MSP)-1(19) and cumulative exposure to Plasmodium falciparum and Plasmodium vivax in remote populations of the Amazon Basin of Brazil. Mem. I. Oswaldo Cruz 102(8), 943–51 (2007).
    Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).
    Prist, P. R. et al. Landscape, Environmental and Social Predictors of Hantavirus Risk in São Paulo, Brazil. PloS One 11(10), e0163459 (2016).
    Hahn, M. B., Gangnon, R. E., Barcellos, C., Asner, G. P. & Patz, J. A. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS One 9(1) (2014).
    Conn, J. E. et al. Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am. J. Trop. Med. Hyg. 66, 18–22 (2002).
    Suárez-Mutis, M. C. & Coura, J. R. Mudanças no padrão epidemiológico da malária em área rural do médio Rio Negro, Amazônia brasileira: análise retrospectiva. Cad. Saude Publica 23(4), 795–804 (2007).
    Magris, M., Rubio-Palis, Y., Menares, C. & Villegas, L. Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela. Mem. I. Oswaldo Cruz 102(3), 303–11 (2007).
    Kirby, K. R. et al. The future of deforestation in the Brazilian Amazon. Futures 38(4), 432–453 (2006).
    Charlwood, J. D. Biological variation in Anopheles darlingi Root. Mem. I. Oswaldo Cruz 91, 391–398 (1996).
    Soares, J. L. N. Estudo acerca da capacidade de geração de renda do projeto de assentamento Serragem/Santana. Estudo apresentado à Divisão de Obtenção de Terras e Implantação de Projetos de Assentamento do INCRA SR (01), atendendo Resolução MDA/INCRA No. 5 de 29 de março de 2012 (2013).
    Lapola, D. M. et al. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 107(8), 3388–3393 (2010).
    Arima, E. Y., Richards, P., Walker, R. & Caldas, M. M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 6(2), 024010 (2011).
    Schneider, M. & Peres, C. A. Environmental costs of government-sponsored agrarian settlements in Brazilian Amazonia. PloS One 10(8), e0134016 (2015).
    Sawyer, D. R., & Sawyer, D. O. The malaria transition and the role of social science research. Advancing the health in developing countries: the role of social research. Westport: Auburn House, 105, 122 (1992).
    Kronka, F. J. N. et al. Inventário florestal da vegetação nativa do Estado de São Paulo. Secretaria do Meio Ambiente, Instituto Florestal. 200 p. (2005).
    Dean, W. A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. 1ª Ed. São Paulo: Cia. das Letras, 484 p. (2004).
    Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: The Indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).
    De Pina-Costa, A. et al. Malaria in Brazil: what happens outside the Amazonian endemic region. Mem. I. Oswaldo Cruz 109(5), 618–33 (2014).
    Galardo, A. K. R. et al. Malaria vector incrimination in three rural riverine villages in the Brazilian Amazon. Am. J. Trop. Med. Hyg. 76, 461–469 (2007).
    Moreno, M. et al. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals. PLoS Neglect. Trop. D. 11(2) (2017).
    Laporta, G. Z. et al. Malaria vectors in South America: current and future scenarios. Parasites & Vectors 8(1), 426 (2015).
    Marques, A. C. Human migration and the spread of malaria in Brazil. Parasitol. Today 3(6), 166–170 (1987).
    Reis, I. C. et al. Epidemic and endemic malaria transmission related to fish farming ponds in the Amazon frontier. PLoS One 10(9), e0137521 (2015).
    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nature Ecology & Evolution 1, 0023 (2017).
    Austin, K., Bellinger, M. & Rana, P. Anthropogenic forest loss and malaria prevalence: a comparative examination of the causes and disease consequences of deforestation in developing nations. Aims Environ. Sci. 4(2), 217–31 (2017).
    Li, X. et al. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice. Vaccine 34, 4501–4506 (2016).
    Organization WH. Immunization, Vaccines andBiologicals [Available from: http://www.who.int/vaccine_research/links/Rainbow/en/index.html (2017).
    Foster, P. G. et al. Phylogeny of Anophelinae using mitochondrial protein coding genes. R. Soc. Open Sci. 4(11), 170758 (2017).