Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46 (2018)

  • Authors:
  • USP affiliated authors: ADORNO, MARIA ANGELA TALLARICO - EESC ; SAAD, SUSANA MARTA ISAY - FCF
  • USP Schools: EESC; FCF
  • DOI: 10.1007/s00253-018-9234-8
  • Subjects: SEQUÊNCIA DO DNA; OBESIDADE; FERMENTAÇÃO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00253-018-9234-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s00253-018-9234-8 (Fonte: Unpaywall API)

    Título do periódico: Applied Microbiology and Biotechnology

    ISSN: 0175-7598,1432-0614



      Não possui versão em Acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BIANCHI, Fernanda; LARSEN, Nadja; TIEGHI, Thatiana de Mello; et al. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Applied Microbiology and Biotechnology, Heidelberg, v. 102, p. 8827-8840 : + Supplementary materials ( S1-S3), 2018. Disponível em: < http://dx.doi.org/10.1007/s00253-018-9234-8 > DOI: 10.1007/s00253-018-9234-8.
    • APA

      Bianchi, F., Larsen, N., Tieghi, T. de M., Adorno, M. A. T., Kot, W., Saad, S. M. I., et al. (2018). Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Applied Microbiology and Biotechnology, 102, 8827-8840 : + Supplementary materials ( S1-S3). doi:10.1007/s00253-018-9234-8
    • NLM

      Bianchi F, Larsen N, Tieghi T de M, Adorno MAT, Kot W, Saad SMI, Jespersen L, Sivieri K. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46 [Internet]. Applied Microbiology and Biotechnology. 2018 ; 102 8827-8840 : + Supplementary materials ( S1-S3).Available from: http://dx.doi.org/10.1007/s00253-018-9234-8
    • Vancouver

      Bianchi F, Larsen N, Tieghi T de M, Adorno MAT, Kot W, Saad SMI, Jespersen L, Sivieri K. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46 [Internet]. Applied Microbiology and Biotechnology. 2018 ; 102 8827-8840 : + Supplementary materials ( S1-S3).Available from: http://dx.doi.org/10.1007/s00253-018-9234-8

    Referências citadas na obra
    Adorno MAT, Hirasawa JS, Varesche MBA (2014) Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). Am J Anal Chem 05:406–414. https://doi.org/10.4236/ajac.2014.57049
    An HM, Park SY, Lee DK, Kim JR, Cha MK, Lee S, Lim H, Kim K, Ha N (2011) Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis 10:116. https://doi.org/10.1186/1476-511X-10-116
    Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Batto J-M, Bertalan M, Borruel N, Casellas F (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944.Enterotypes
    Ayres M, Ayres JM, Ayres DL, Santos AAS (2007) Bioestat 5.0: Aplicações estatísticas nas áreas das ciências biomédicas. Instituto de Desenvolvimento Sustentável Mamirauá, Belém.
    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci 104:979–984. https://doi.org/10.1073/pnas.0605374104
    Bomhof MR, Reimer RA (2015) Pro- and prebiotics: the role of gut microbiota in obesity. In: Venema K, do Carmo AP (eds) Probiotics and prebiotics: current research and future trends. Caister Academic Press, Poole, pp 363–380
    Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Delzenne NM (2008) Changes in gut microbiota control metabolic diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481. https://doi.org/10.2337/db07-1403
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. https://doi.org/10.1073/pnas.1000080107
    Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6:110–119. https://doi.org/10.4291/wjgp.v6.i4.110
    Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107
    De Maesschalck C, Van Immerseel F, Eeckhaut V, De Baere SD, Cnockaert M, Croubels S, Haesebrouck F, Ducatelle R, Vandamme P (2014) Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. Int J Syst Evol Microbiol 64:3877–3884. https://doi.org/10.1099/ijs.0.064626-0
    DeVries JW, Camire ME, Cho S, Craig S, Gordon D, Jones JM, Li B, Lineback D, Prosky L, Tungland BC (2001) The definition of dietary fiber. Cereal Foods World 46:112–126. https://doi.org/10.3402/fnr.v54i0.5750
    Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004
    Duncan SH, Louis P, Flint HJ (2007) Cultivable bacterial diversity from the human colon. Lett Appl Microbiol 44:343–350
    Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841. https://doi.org/10.1128/AEM.01296-06
    Flegal KM, Panagiotou OA, Graubard BI (2015) Estimating population attributable fractions to quantify the health burden of obesity. Ann Epidemiol 25:201–207. https://doi.org/10.1016/j.annepidem.2014.11.010
    Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M (2010) Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 104:919–929. https://doi.org/10.1017/S0007114510001303
    Gómez B, Gullón B, Yáñez R, Schols H, Alonso JL (2016) Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: a comparative evaluation. J Funct Foods 20:108–121. https://doi.org/10.1016/j.jff.2015.10.029
    Hughes R, Kurth MJ, McGilligan V, McGlynn H, Rowland I (2008) Effect of colonic bacterial metabolites on caco-2 cell paracellular permeability in vitro. Nutr Cancer 60:259–266. https://doi.org/10.1080/01635580701649644
    Ichikawa H, Sakata T (1998) Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive. J Nutr 128:843–847
    Ito M, Kimura M, Deguchi Y, Yajima T, Kan T (1993) Effects of transgalactosylated intestinal microflora and their on the human metabolism. J Nutr Sci Vitaminol (Tokyo) 39:279–288
    Kameyama K, Itoh K (2014) Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ 29:427–430. https://doi.org/10.1264/jsme2.ME14054
    Kontula P, Nollet L, Saarela M, Vilpponen-Salmela T, Verstraete W, Mattila-Sandholm T, Von Wright A (2002) The effect of lactulose on the survival of Lactobacillus rhamnosus in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in vivo. Microb Ecol Health Dis 14:90–96. https://doi.org/10.1080/08910600260081739
    Kushner RF, Choi SW (2010) Prevalence of unhealthy lifestyle patterns among overweight and obese adults. Obesity 18:1160–1167. https://doi.org/10.1038/oby.2009.376
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a
    Li RW, Wu S, Li W, Navarro K, Couch RD, Hill D, Joseph F, Urban J (2012) Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect Immun 80:2150–2157. https://doi.org/10.1128/IAI.00141-12
    López-pérez M, Rodriguez-Valera F (2014) The family Alteromonadaceae. In: Rosenberg E, EF DL, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer-Verlag Berlin Heidelberg, Berlin, pp 69–92
    Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314. https://doi.org/10.1111/j.1462-2920.2009.02066.x
    Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep 6:1–13. https://doi.org/10.1038/srep37589
    Macfarlane GT, Cummings JP (1991) The colonic flora, fermentation and large bowel digestive function. In: Phillips SF, Pemberton JH, Shorter GR (eds) The large intestine: physiology, pathophysiology and disease. Raven Press, New York, p 923
    Macfarlane GT, Macfarlane S (2007) Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol 18:156–162. https://doi.org/10.1016/j.copbio.2007.01.011
    Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237. https://doi.org/10.1186/1746-6148-8-237
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139
    Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM (2017) Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes 41:1099–1105. https://doi.org/10.1038/ijo.2017.66
    Minitab (2010) Minitab 17 Statistical Software [Computer software]. Minitab, Inc., State College. http://www.minitab.com . Accessed 26 Oct 2017
    Molly K, Woestyne MV, Verstraete W (1993) Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–258. https://doi.org/10.1007/BF00228615
    Molly K, Woestyne MV, De SI, Verstraete W (1994) Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) reactor using microorganism-associated activities. Microb Ecol Health Dis 7:191–200. https://doi.org/10.3109/08910609409141354
    Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200. https://doi.org/10.1080/19490976.2015.1134082
    Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, Lee YK (2017) Impact of westernized diet on gut microbiota in children on Leyte island. Front Microbiol 8:1–18. https://doi.org/10.3389/fmicb.2017.00197
    Olano-Martin E, Gibson GR, Rastall RA (2002) Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J Appl Microbiol 93:505–511. https://doi.org/10.1046/j.1365-2672.2002.01719.x
    Onrust L, Ducatelle R, Van Driessche K, De Maesschalck C, Vermeulen K, Haesebrouck F, Eeckhaut V, Van Immerseel F (2015) Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health. Front Vet Sci 2:1–8. https://doi.org/10.3389/fvets.2015.00075
    Parvova I, Danchev N, Hristov E (2011) Animal models of human diseases and their significance for clinical studies of new drugs. J Clin Med 4:19–29
    Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL (2016) Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome. Nature 534:213–217. https://doi.org/10.1038/nature18309
    Possemiers S, Verthé K, Uyttendaele S, Verstraete W (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49:495–507. https://doi.org/10.1016/j.femsec.2004.05.002
    Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TMS (2014) Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes 38:1525–1531. https://doi.org/10.1038/ijo.2014.46
    Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, Knight R, Ley RE, Leibel RL (2012) Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity 20:738–747. https://doi.org/10.1038/oby.2011.111
    Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:1–9. https://doi.org/10.3389/fmicb.2016.00185
    Rosenbaum M, Knight R, Leibel RL (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 26:493–501
    RStudio (2017) RStudio: integrated development environment for R (Version 1.1.383) [Computer software]. Boston, MA. http://www.rstudio.org/ . Accessed 16 Sept 2017
    Santos EO, Thompson FE (2014) The family Succinivibrionaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Gammaproteobacteria, 4th edn. Springer-Verlag, Berlin Heidelberg, pp 639–648
    Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195. https://doi.org/10.1038/oby.2009.167
    Smith EA, MacFarlane GT (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 25:355–368. https://doi.org/10.1016/S0168-6496(98)00004-X
    Tachedjian G, Aldunate M, Bradshaw CS, Cone RA (2017) The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol 168:782–792. https://doi.org/10.1016/j.resmic.2017.04.001
    Tian L, Bruggeman G, van den Berg M, Borewicz K, Scheurink AJW, Bruininx E, de Vos P, Smidt H, Schols HA, Gruppen H (2017) Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Mol Nutr Food Res 61:10–10. https://doi.org/10.1002/mnfr.201600186
    Trepel F (2004) Dietary fibre: more than a matter of dietetics. I. Compounds, properties, physiological effects. Wien Klin Wochenschr 116:465–476
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414
    Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275. https://doi.org/10.1007/s11224-009-9442-z
    Wicker L, Kim YK (2015) Pectin and health. In: Caballero B, Finglas P, Toldra F (eds) Encyclopedia of food and health. Academic, Cambridge, pp 289–293
    Williams AR, Hansen TVA, Krych L, Ahmad HFB, Nielsen DS, Skovgaard K, Thamsborg SM (2017) Dietary cinnamaldehyde enhances acquisition of specific antibodies following helminth infection in pigs. Vet Immunol Immunopathol 189:43–52. https://doi.org/10.1016/j.vetimm.2017.06.004
    Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterology 132:2116–2130. https://doi.org/10.1053/j.gastro.2007.03.048
    Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJH, Smith DM, Arch JRS (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584:2381–2386. https://doi.org/10.1016/j.febslet.2010.04.027
    Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy S, Hegsted M, Keenan MJ (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295:1160–1166. https://doi.org/10.1152/ajpendo.90637.2008