Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Synthesis of highly dispersed gold nanoparticles on `Al IND. 2´` O IND. 3´, `SI´`O IND. 2´, and `TI´`O IND. 2´ for the solvent-free oxidation of benzyl alcohol under low metal loadings (2019)

  • Authors:
  • USP affiliated authors: TORRESI, SUSANA INES CORDOBA DE - IQ ; CAMARGO, PEDRO HENRIQUE CURY - IQ
  • USP Schools: IQ; IQ
  • DOI: 10.1007/s10853-018-2827-x
  • Subjects: NANOPARTÍCULAS; OXIDAÇÃO; SOLVENTE
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10853-018-2827-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GUALTEROS, Jesus A. D; GARCIA, Marco A. S; SILVA, Anderson G. M. da; et al. Synthesis of highly dispersed gold nanoparticles on `Al IND. 2´` O IND. 3´, `SI´`O IND. 2´, and `TI´`O IND. 2´ for the solvent-free oxidation of benzyl alcohol under low metal loadings. Journal of Materials Science, Norwell, v. 54, n. 1, p. 238-251, 2019. Disponível em: < http://dx.doi.org/10.1007/s10853-018-2827-x > DOI: 10.1007/s10853-018-2827-x.
    • APA

      Gualteros, J. A. D., Garcia, M. A. S., Silva, A. G. M. da, Rodrigues, T. S., Cândido, E. G., Silva, F. A. e, et al. (2019). Synthesis of highly dispersed gold nanoparticles on `Al IND. 2´` O IND. 3´, `SI´`O IND. 2´, and `TI´`O IND. 2´ for the solvent-free oxidation of benzyl alcohol under low metal loadings. Journal of Materials Science, 54( 1), 238-251. doi:10.1007/s10853-018-2827-x
    • NLM

      Gualteros JAD, Garcia MAS, Silva AGM da, Rodrigues TS, Cândido EG, Silva FA e, Fonseca FC, Quiroz J, Oliveira DC de, Torresi SIC de, Moura CVR de, Camargo PHC de, Moura EM de. Synthesis of highly dispersed gold nanoparticles on `Al IND. 2´` O IND. 3´, `SI´`O IND. 2´, and `TI´`O IND. 2´ for the solvent-free oxidation of benzyl alcohol under low metal loadings [Internet]. Journal of Materials Science. 2019 ; 54( 1): 238-251.Available from: http://dx.doi.org/10.1007/s10853-018-2827-x
    • Vancouver

      Gualteros JAD, Garcia MAS, Silva AGM da, Rodrigues TS, Cândido EG, Silva FA e, Fonseca FC, Quiroz J, Oliveira DC de, Torresi SIC de, Moura CVR de, Camargo PHC de, Moura EM de. Synthesis of highly dispersed gold nanoparticles on `Al IND. 2´` O IND. 3´, `SI´`O IND. 2´, and `TI´`O IND. 2´ for the solvent-free oxidation of benzyl alcohol under low metal loadings [Internet]. Journal of Materials Science. 2019 ; 54( 1): 238-251.Available from: http://dx.doi.org/10.1007/s10853-018-2827-x

    Referências citadas na obra
    Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126. https://doi.org/10.1039/b707314n
    Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506. https://doi.org/10.1021/cr3000785
    Luza L, Rambor CP, Gual A et al (2017) Revealing hydrogenation reaction pathways on naked gold nanoparticles. ACS Catal 7:2791–2799. https://doi.org/10.1021/acscatal.7b00391
    Mitsudome T, Kaneda K (2013) Gold nanoparticle catalysts for selective hydrogenations. Green Chem 15:2636–2654. https://doi.org/10.1039/c3gc41360h
    Bond GC (2016) Hydrogenation by gold catalysts: an unexpected discovery and a current assessment. Gold Bull 49:53–61. https://doi.org/10.1007/s13404-016-0182-8
    Rodrigues TS, Silva AGM, Macedo A et al (2015) Probing the catalytic activity of bimetallic versus trimetallic nanoshells. J Mater Sci 50:5620–5629. https://doi.org/10.1007/s10853-015-9114-x
    Li G, Jin R (2013) Catalysis by gold nanoparticles: carbon–carbon coupling reactions. Nanotechnol Rev 2:529–545. https://doi.org/10.1515/ntrev-2013-0020
    Milone C, Trapani M, Zanella R et al (2010) Deposition-precipitation with urea to prepare Au/Mg(OH)2 catalysts: influence of the preparation conditions on metal size and load. Mater Res Bull 45:1925–1933. https://doi.org/10.1016/j.materresbull.2010.08.014
    Lanterna AE, Elhage A, Scaiano JC (2015) Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catal Sci Technol 5:4336–4340. https://doi.org/10.1039/c5cy00655d
    da Silva AGM, Kisukuri CM, Rodrigues TS et al (2016) MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Appl Catal B Environ 184:35–43. https://doi.org/10.1016/j.apcatb.2015.11.023
    Alhumaimess M, Lin Z, Weng W et al (2012) Oxidation of benzyl alcohol by using gold nanoparticles supported on ceria foam. Chemsuschem 5:125–131. https://doi.org/10.1002/cssc.201100374
    Castro KPR, Garcia MAS, de Abreu WC et al (2018) Aerobic oxidation of benzyl alcohol on a strontium-based gold material: remarkable intrinsic basicity and reusable catalyst. Catalysts 8:83. https://doi.org/10.3390/catal8020083
    Fang W, Chen J, Zhang Q et al (2011) Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects. Chem A Eur J 17:1247–1256. https://doi.org/10.1002/chem.201002469
    Oliveira AAS, Costa DS, Teixeira IF et al (2017) Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catal Today 289:89–95. https://doi.org/10.1016/j.cattod.2016.10.028
    Wang H, Shi Y, Haruta M, Huang J (2017) Aerobic oxidation of benzyl alcohol in water catalyzed by gold nanoparticles supported on imidazole containing crosslinked polymer. Appl Catal A Gen 536:27–34. https://doi.org/10.1016/j.apcata.2017.02.015
    Guo D, Wang Y, Zhao P et al (2016) Selective aerobic oxidation of benzyl alcohol driven by visible light on gold nanoparticles supported on hydrotalcite modified by nickel ion. Catalysts 6:64. https://doi.org/10.3390/catal6050064
    Hernández WY, Aliç F, Navarro-Jaen S et al (2017) Structural and catalytic properties of Au/MgO-type catalysts prepared in aqueous or methanol phase: application in the CO oxidation reaction. J Mater Sci 52:4727–4741. https://doi.org/10.1007/s10853-016-0715-9
    Wu P, Bai P, Yan Z, Zhao GXS (2016) Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Sci Rep 6:18817. https://doi.org/10.1038/srep18817
    Tanaka S, Lin J, Kaneti YV et al (2018) Gold nanoparticles supported on mesoporous iron oxide for enhanced CO oxidation reaction. Nanoscale. https://doi.org/10.1039/c7nr08895g
    de Abreu WC, Garcia MAS, Nicolodi S et al (2018) Magnesium surface enrichment of CoFe2O4 magnetic nanoparticles immobilized with gold: reusable catalysts for green oxidation of benzyl alcohol. RSC Adv 8:3903–3909. https://doi.org/10.1039/c7ra13590d
    Ballarin B, Barreca D, Boanini E et al (2017) Supported gold nanoparticles for alcohols oxidation in continuous-flow heterogeneous systems. ACS Sustain Chem Eng 5:4746–4756. https://doi.org/10.1021/acssuschemeng.7b00133
    Sharma AS, Kaur H, Shah D (2016) Selective oxidation of alcohols by supported gold nanoparticles: recent advances. RSC Adv 6:28688–28727. https://doi.org/10.1039/c5ra25646a
    Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451. https://doi.org/10.1039/c1cs15219j
    Camargo PHC, Rodrigues TS, Silva AGM, Wang J (2015) Metallic nanostructures. Springer, Berlin. https://doi.org/10.1007/978-3-319-11304-3
    Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Rec 3:75–87. https://doi.org/10.1002/tcr.10053
    Chen X, Zhu H (2011) Catalysis by supported gold nanoparticles. In: Andrews D, Scholes G, Wiederrecht G (eds) Comprehensive nanoscience and technology, vol 3. Elsevier, Amsterdam, pp 1–11
    Rodríguez-Reyes JCF, Friend CM, Madix RJ (2012) Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol. Surf Sci 606:1129–1134. https://doi.org/10.1016/j.susc.2012.03.013
    Tchaplyguine M, Mikkelä MH, Zhang C et al (2015) Gold oxide nanoparticles with variable gold oxidation state. J Phys Chem C 119:8937–8943. https://doi.org/10.1021/acs.jpcc.5b00811
    Rossi LM, Fiorio JL, Garcia MAS, Ferraz CP (2018) Role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans. https://doi.org/10.1039/c7dt04728b
    da Silva AGM, Rodrigues TS, Slater TJA et al (2015) Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings. ACS Appl Mater Interfaces 7:25624–25632. https://doi.org/10.1021/acsami.5b08725
    Kisukuri CM, Palmeira DJ, Rodrigues TS et al (2016) Bimetallic nanoshells as platforms for metallo- and biometallo-catalytic applications. ChemCatChem 8:171–179. https://doi.org/10.1002/cctc.201500812
    da Silva AGM, Rodrigues TS, Haigh SJ, Camargo PHC (2017) Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem Commun 53:7135–7148. https://doi.org/10.1039/c7cc02352a
    Shanahan AE, Sullivan JA, McNamara M, Byrne HJ (2011) Preparation and characterization of a composite of gold nanoparticles and single-walled carbon nanotubes and its potential for heterogeneous catalysis. Xinxing Tan Cailiao/New Carbon Mater 26:347–355. https://doi.org/10.1016/s1872-5805(11)60087-5
    Ben Haddada M, Blanchard J, Casale S et al (2013) Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane. Gold Bull 46:335–341. https://doi.org/10.1007/s13404-013-0120-y
    Aureau D, Varin Y, Roodenko K et al (2010) Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces. J Phys Chem C 114:14180–14186. https://doi.org/10.1021/jp104183m
    Lopez-Sanchez JA, Dimitratos N, Hammond C et al (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556. https://doi.org/10.1038/nchem.1066
    Tsubota S, Haruta M, Kobayashi T et al (1991) Preparation of highly dispersed gold on titanium and magnesium oxide. Stud Surf Sci Catal 63:695–704. https://doi.org/10.1016/s0167-2991(08)64634-0
    Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106:7634–7642. https://doi.org/10.1021/jp0144810
    Geus JW. Utrecht, pp 113–130
    de Moura EM, Garcia MAS, Gonçalves RV et al (2015) Gold nanoparticles supported on magnesium ferrite and magnesium oxide for the selective oxidation of benzyl alcohol. RSC Adv 5:15035–15041. https://doi.org/10.1039/c4ra16159a
    Mirescu A, Berndt H, Martin A, Prüße U (2007) Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Appl Catal A Gen 317:204–209. https://doi.org/10.1016/j.apcata.2006.10.016
    Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069. https://doi.org/10.1002/anie.200500382
    Ke Y-H, Qin X-X, Liu C-L et al (2014) Oxidative esterification of ethylene glycol in methanol to form methyl glycolate over supported Au catalysts. Catal Sci Technol 4:3141–3150. https://doi.org/10.1039/c4cy00556b
    Catalysis of gold nanoparticles deposited on metal oxides.pdf
    Okumura M, Tsubota S, Iwamoto M, Haruta M (1998) Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H2. Chem Lett 27:315–316. https://doi.org/10.1246/cl.1998.315
    Prati L, Rossi M (1998) Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J Catal 176:552–560. https://doi.org/10.1006/jcat.1998.2078
    Prati L, Martra G (1999) New gold catalysts for liquid phase oxidation. Gold Bull 32:96–101. https://doi.org/10.1007/bf03216617
    Porta F, Prati L, Rossi M et al (2000) Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation. Catal Today 61:165–172. https://doi.org/10.1016/s0920-5861(00)00370-9
    Gu D, Tseng JC, Weidenthaler C et al (2016) Gold on different manganese oxides: ultra-low-temperature CO oxidation over colloidal gold supported on bulk-MnO2 nanomaterials. J Am Chem Soc 138:9572–9580. https://doi.org/10.1021/jacs.6b04251
    Chang LY, Barnard AS, Gontard LC, Dunin-Borkowski RE (2010) Resolving the structure of active sites on platinum catalytic nanoparticles. Nano Lett 10:3073–3076. https://doi.org/10.1021/nl101642f
    Yoshitake H, Iwasawa Y (1992) Electronic metal support interaction in platinum catalysts under deuterium–ethene reaction conditions and the microscopic nature of the active sites. J Phys Chem 96:1329–1334. https://doi.org/10.1021/j100182a057
    Souza MCP, Lenzi GG, Colpini LMS et al (2011) Photocatalytic discoloration of reactive blue 5G dye in the presence of mixed oxides and with the addition of iron and silver. Braz J Chem Eng 28:393–402. https://doi.org/10.1590/s0104-66322011000300005
    Dimas-Rivera GL, de la Rosa JR, Lucio-Ortiz CJ et al (2014) Desorption of furfural from bimetallic Pt–Fe oxides/alumina catalysts. Materials (Basel) 7:527–541. https://doi.org/10.3390/ma7010527
    Oliveira RL, Bitencourt IG, Passos FB (2013) Partial oxidation of methane to syngas on Rh/Al2O3 and Rh/Ce-ZrO2 catalysts. J Braz Chem Soc 24:68–75. https://doi.org/10.1590/s0103-50532013000100010
    Rodrigues TS, da Silva AGM, Gonçalves MC et al (2016) Catalytic properties of AgPt nanoshells as a function of size: larger outer diameters lead to improved performances. Langmuir 32:9371–9379. https://doi.org/10.1021/acs.langmuir.6b01783
    van Steen E, Sewell GS, Makhothe RA et al (1996) TPR study on the preparation of impregnated Co/SiO2 catalysts. J Catal 162:220–229. https://doi.org/10.1006/jcat.1996.0279
    Perini L, Durante C, Favaro M et al (2015) Metal–support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 7:1170–1179. https://doi.org/10.1021/am506916y
    Lunkenbein T, Schumann J, Behrens M et al (2015) Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal–support interactions. Angew Chem 127:4627–4631. https://doi.org/10.1002/ange.201411581
    Carrasco J, López-Durán D, Liu Z et al (2015) in situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal–support interactions for the cleavage of O–H bonds. Angew Chem Int Ed 54:3917–3921. https://doi.org/10.1002/anie.201410697
    Fang J, Li J, Zhang B et al (2015) The support effect on the size and catalytic activity of thiolated Au25 nanoclusters as precatalysts. Nanoscale 7:6325–6333. https://doi.org/10.1039/c5nr00549c
    da Silva AHM, Rodrigues TS, da Silva AGM et al (2017) Systematic investigation of the effect of oxygen mobility on CO oxidation over AgPt nanoshells supported on CeO2, TiO2 and Al2O3. J Mater Sci 52:13764–13778. https://doi.org/10.1007/s10853-017-1481-z
    Li Y, Zheng Y, Wang L, Fu Z (2017) Oxidative esterification of methacrolein to methyl methacrylate over supported gold catalysts prepared by colloid deposition. ChemCatChem 9:1960–1968. https://doi.org/10.1002/cctc.201601688
    Tsutsumi K, Mitani Y, Takahashi H (1983) Direct measurement of the interaction energy between solids and gases. Ix. Heats of adsorption of ammonia and pyridine on several solids at high temperature. Bull Chem Soc Jpn 56:1912–1916
    Today C, Universit Z, Universit CL (1998) Surface acidity and basicity: general concepts. Catal Today 41:169–177. https://doi.org/10.1016/s0920-5861(98)00047-9
    Ferraz CP, Garcia MAS, Teixeira-Neto É, Rossi LM (2016) Oxidation of benzyl alcohol catalyzed by gold nanoparticles under alkaline conditions: weak vs. strong bases. RSC Adv 6:25279–25285. https://doi.org/10.1039/c6ra01795a
    Roduner E (2014) Understanding catalysis. Chem Soc Rev 43:8226–8239. https://doi.org/10.1039/c4cs00210e
    Ntho T, Aluha J, Gqogqa P et al (2013) Au/γ-Al2O3 catalysts for glycerol oxidation: the effect of support acidity and gold particle size. React Kinet Mech Catal 109:133–148. https://doi.org/10.1007/s11144-013-0542-9
    Okumura M, Tsubota S, Haruta M (2003) Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J Mol Catal A Chem 199:73–84. https://doi.org/10.1016/s1381-1169(03)00020-7
    Saavedra J, Pursell CJ, Chandler BD (2018) CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: evidence for a common water-assisted mechanism. J Am Chem Soc. https://doi.org/10.1021/jacs.7b12758
    Helwani Z, Othman MR, Aziz N et al (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A Gen 363:1–10. https://doi.org/10.1016/j.apcata.2009.05.021
    Yang K, Meng C, Lin L et al (2016) A heterostructured TiO2–C3N4 support for gold catalysts: a superior preferential oxidation of CO in the presence of H2 under visible light irradiation and without visible light irradiation. Catal Sci Technol 6:829–839. https://doi.org/10.1039/c5cy01009h