Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Entanglement in finite quantum systems under twisted boundary conditions (2018)

  • Authors:
  • USP affiliated authors: OLIVEIRA, LUIZ NUNES DE - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s13538-018-0587-3
  • Subjects: FÍSICA DO ESTADO SÓLIDO; MECÂNICA QUÂNTICA; FÍSICA TEÓRICA; SISTEMAS HAMILTONIANOS
  • Keywords: Entanglement; Boundary conditions; Hubbard Hamiltonian; Finite quantum systems
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s13538-018-0587-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ZAWADZKI, Krissia; D'AMICO, I.; OLIVEIRA, Luiz Nunes de. Entanglement in finite quantum systems under twisted boundary conditions. Brazilian Journal of Physics, New York, Springer, v. 48, n. 5, p. 451-466, 2018. Disponível em: < http://dx.doi.org/10.1007/s13538-018-0587-3 > DOI: 10.1007/s13538-018-0587-3.
    • APA

      Zawadzki, K., D'Amico, I., & Oliveira, L. N. de. (2018). Entanglement in finite quantum systems under twisted boundary conditions. Brazilian Journal of Physics, 48( 5), 451-466. doi:10.1007/s13538-018-0587-3
    • NLM

      Zawadzki K, D'Amico I, Oliveira LN de. Entanglement in finite quantum systems under twisted boundary conditions [Internet]. Brazilian Journal of Physics. 2018 ; 48( 5): 451-466.Available from: http://dx.doi.org/10.1007/s13538-018-0587-3
    • Vancouver

      Zawadzki K, D'Amico I, Oliveira LN de. Entanglement in finite quantum systems under twisted boundary conditions [Internet]. Brazilian Journal of Physics. 2018 ; 48( 5): 451-466.Available from: http://dx.doi.org/10.1007/s13538-018-0587-3

    Referências citadas na obra
    F.C. Alcaraz, M.N. Barber, M.T. Batchelor, Conformal invariance, the XXZ chain and the operator content of two-dimensional critical systems. Ann. Phys. 182(2), 280–343 (1988). https://doi.org/10.1016/0003-4916(88)90015-2. http://www.sciencedirect.com/science/article/pii/0003491688900152
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008). https://doi.org/10.1103/RevModPhys.80.517
    S. Baier, M.J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov, P. Zoller, F. Ferlaino, Extended Bose-Hubbard models with ultracold magnetic atoms. Science. 352(6282), 201–205 (2016)
    R.N. Bannister, N. d’Ambrumenil, Spectral functions of half-filled one-dimensional Hubbard rings with varying boundary conditions. Phys. Rev. B. 61, 4651–4658 (2000). https://link.aps.org/doi/10.1103/PhysRevB.61.4651
    M. Boll, T.A. Hilker, G. Salomon, A. Omran, J. Nespolo, L. Pollet, I. Bloch, C. Gross, Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains. Science. 353(6305), 1257–1260 (2016). https://doi.org/10.1126/science.aag1635
    T. Byrnes, N.Y. Kim, K. Kusudo, Y. Yamamoto, Quantum simulation of Fermi-Hubbard models in semiconductor quantum-dot arrays. Phys. Rev. B. 78(075), 320 (2008). https://doi.org/10.1103/PhysRevB.78.075320
    J. Cirac, D. Pérez-García, N. Schuch, F. Verstraete, Matrix product density operators: renormalization fixed points and boundary theories. Ann. Phys. 378, 100–149 (2017). https://doi.org/10.1016/j.aop.2016.12.030
    M. Dagrada, S. Karakuzu, V.L. Vildosola, M. Casula, S. Sorella, Exact special twist method for quantum Monte Carlo simulations. Phys. Rev. B. 94(245), 108 (2016). https://doi.org/10.1103/PhysRevB.94.245108
    G.J.A. Edge, R. Anderson, D. Jervis, D.C. McKay, R. Day, S. Trotzky, J.H. Thywissen, Imaging and addressing of individual fermionic atoms in an optical lattice. Phys. Rev. A. 92(063), 406 (2015). https://doi.org/10.1103/PhysRevA.92.063406
    V.V. Franca, K. Capelle, Entanglement in spatially inhomogeneous many-fermion systems. Phys. Rev. Lett. 100(070), 403 (2008). https://doi.org/10.1103/PhysRevLett.100.070403
    T. Fukui, N. Kawakami, Breakdown of the Mott insulator: exact solution of an asymmetric hubbard model. Phys. Rev. B. 58, 16,051–16,056 (1998). https://link.aps.org/doi/10.1103/PhysRevB.58.16051
    E.R. Gagliano, E. Dagotto, A. Moreo, F.C. Alcaraz, Correlation functions of the antiferromagnetic Heisenberg model using a modified Lanczos method. Phys. Rev. B. 34, 1677–1682 (1986). https://doi.org/10.1103/PhysRevB.34.1677
    J.T. Gammel, D. Campbell, E.Y. Loh, Extracting infinite system properties from finite size clusters: phase randomization/boundary condition averaging. Synth. Met. 57(2), 4437–4442 (1993). https://doi.org/10.1016/0379-6779(93)90763-M
    C. Gros, Control of the finite-size corrections in exact diagonalization studies. Phys. Rev. B. 53, 6865–6868 (1996). https://doi.org/10.1103/PhysRevB.53.6865
    S.J. Gu, S.S. Deng, Y.Q. Li, H.Q. Lin, Entanglement and quantum phase transition in the extended Hubbard model. Phys. Rev. Lett. 93, 086,402 (2004). https://doi.org/10.1103/PhysRevLett.93.086402
    J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. London A: Mathematical Phys. Eng. Sci. 276(1365), 238–257 (1963). https://doi.org/10.1098/rspa.1963.0204
    R. Jordens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice. Nature. 455, 204–207 (2008). https://doi.org/10.1038/nature07244
    P.R.C. Kent, R.Q. Hood, A.J. Williamson, R.J. Needs, W.M.C. Foulkes, G. Rajagopal, Finite-size errors in quantum many-body simulations of extended systems. Phys. Rev. B. 59, 1917–1929 (1999). https://doi.org/10.1103/PhysRevB.59.1917
    M. Kormos, M. Collura, G. Takács, P. Calabrese, Real-time confinement following a quantum quench to a non-integrable model. Nat. Phys. 13(3), 246 (2017)
    N. Laflorencie, Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1–59 (2016). https://doi.org/10.1016/j.physrep.2016.06.008. Quantum entanglement in condensed matter systems
    D. Larsson, H. Johannesson, Entanglement scaling in the one-dimensional Hubbard model at criticality. Phys. Rev. Lett. 95, 196,406 (2005). https://doi.org/10.1103/PhysRevLett.95.196406
    D. Larsson, H. Johannesson, Single-site entanglement of fermions at a quantum phase transition. Phys. Rev. A. 73, 042,320 (2006). https://doi.org/10.1103/PhysRevA.73.042320
    E.H. Lieb, F. Wu, The one-dimensional Hubbard model: a reminiscence. Physica A: Statist. Mech. Appl. 321(1), 1–27 (2003). https://doi.org/10.1016/S0378-4371(02)01785-5. Statphys-Taiwan-2002: Lattice Models and Complex Systems
    C. Lin, F.H. Zong, D.M. Ceperley, Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. Phys. Rev. E. 64(016), 702 (2001). https://doi.org/10.1103/PhysRevE.64.016702
    H. Lin, J. Gubernatis, H. Gould, J. Tobochnik, Exact diagonalization methods for quantum systems. Comput. Phys. 7(4), 400–407 (1993). https://doi.org/10.1063/1.4823192
    H.Q. Lin, Exact diagonalization of quantum-spin models. Phys. Rev. B. 42, 6561–6567 (1990). https://doi.org/10.1103/PhysRevB.42.6561
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Scaling of entanglement close to a quantum phase transition. Nature. 416, 608–610 (2002). https://doi.org/10.1038/416608a
    P. Papanastasiou, C. Ottaviani, S. Pirandola, Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A. 96(042), 332 (2017). https://doi.org/10.1103/PhysRevA.96.042332
    M.F. Parsons, A. Mazurenko, C.S. Chiu, G. Ji, D. Greif, M. Greiner, Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science. 353(6305), 1253–1256 (2016). https://doi.org/10.1126/science.aag1430
    M. Rigol, Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100,403 (2009). https://doi.org/10.1103/PhysRevLett.103.100403
    J. Salfi, J.A. Mol, R. Rahman, G. Klimeck, M.Y. Simmons, L.C.L. Hollenberg, S. Rogge, Quantum simulation of the Hubbard model with dopant atoms in silicon. Nat. Commun. 7(11), 342 (2016). https://doi.org/10.1038/ncomms11342
    B.S. Shastry, B. Sutherland, Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard chains. Phys. Rev. Lett. 65(2), 243–246 (1990)
    M. Shiroishi, M. Wadati, Integrable boundary conditions for the one-dimensional Hubbard model. J. Physical Soc. Japan. 66(8), 2288–2301 (1997)
    G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90(227), 902 (2003). https://doi.org/10.1103/PhysRevLett.90.227902
    J. Vidal, G. Palacios, R. Mosseri, Entanglement in a second-order quantum phase transition. Phys. Rev. A. 69, 022,107 (2004). https://doi.org/10.1103/PhysRevA.69.022107
    B. Wang, F. N. Ünal, A. Eckardt, Floquet engineering of optical solenoids and quantized charge pumping along tailored paths in two-dimensional chern insulators. arXiv:1802.06815 (2018)
    P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S. Vajna, M. Kolodrubetz, Adiabatic perturbation theory and geometry of periodically-driven systems. Phys. Rep. 688, 1–35 (2017). https://doi.org/10.1016/j.physrep.2017.05.003. http://www.sciencedirect.com/science/article/pii/S0370157317301412. Adiabatic Perturbation Theory and Geometry of Periodically-Driven Systems
    L.A. Wu, M.S. Sarandy, D.A. Lidar, L.J. Sham, Linking entanglement and quantum phase transitions via density-functional theory. Phys. Rev. A. 74, 052,335 (2006). https://doi.org/10.1103/PhysRevA.74.052335
    S. Yang, Z.C. Gu, X.G. Wen, Loop optimization for tensor network renormalization. Phys. Rev. Lett. 118(110), 504 (2017). https://doi.org/10.1103/PhysRevLett.118.110504
    R. Yue, T. Deguchi, Analytic Bethe Ansatz for 1D Hubbard model and twisted coupled XY model. J. Phys. A: Math. Gen. 30(3), 849 (1997). http://stacks.iop.org/0305-4470/30/i=3/a=011
    K. Zawadzki, I. D’Amico, L.N. Oliveira, Symmetries and boundary conditions with a twist. Braz. J. Phys. 47(5), 488–511 (2017)