Ver registro no DEDALUS
Exportar registro bibliográfico



Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates (2018)

  • Authors:
  • USP Schools: IB; IB
  • DOI: 10.1038/s41598-018-26225-7
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-26225-7 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERRAZ, Tiago; PISSINATTI, Alcides; PAIXÃO-CORTÊS, Vanessa R; et al. Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates. Scientific Reports, London, v. 6, p. 1-10, 2018. Disponível em: < > DOI: 10.1038/s41598-018-26225-7.
    • APA

      Ferraz, T., Pissinatti, A., Paixão-Cortês, V. R., Bortolini, M. C., González-José, R., Marroig, G., et al. (2018). Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates. Scientific Reports, 6, 1-10. doi:10.1038/s41598-018-26225-7
    • NLM

      Ferraz T, Pissinatti A, Paixão-Cortês VR, Bortolini MC, González-José R, Marroig G, Salzano FM, Gonçalves GL, Hünemeier T, Rossoni DM, Althof SL. Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates [Internet]. Scientific Reports. 2018 ; 6 1-10.Available from:
    • Vancouver

      Ferraz T, Pissinatti A, Paixão-Cortês VR, Bortolini MC, González-José R, Marroig G, Salzano FM, Gonçalves GL, Hünemeier T, Rossoni DM, Althof SL. Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates [Internet]. Scientific Reports. 2018 ; 6 1-10.Available from:

    Referências citadas na obra
    Abzhanov, A. Bmp4 and Morphological Variation of Beaks in Darwin’s Finches. Science 305, 1462–1465 (2004).
    Abzhanov, A. et al. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442, 563–567 (2006).
    Martínez-Abadías, N. et al. FGF/FGFR Signaling Coordinates Skull Development by Modulating Magnitude of Morphological Integration: Evidence from Apert Syndrome Mouse Models. PLoS ONE 6, e26425 (2011).
    Sears, K. E. Quantifying the impact of development on phenotypic variation and evolution. J. Exp. Zoolog. B Mol. Dev. Evol. 322, 643–653 (2014).
    Orr, D. J. A., Teeling, E. C., Puechmaille, S. J. & Finarelli, J. A. Patterns of orofacial clefting in the facial morphology of bats: a possible naturally occurring model of cleft palate. J. Anat. 229, 657–672 (2016).
    Futuyma, D. J. Evolutionary biology. (Sinauer Associates, 1998).
    Popadic, A., Abzhanov, A., Rusch, D. & Kaufman, T. C. Understanding the genetic basis of morphological evolution: the role of homeotic genes in the diversification of the arthropod bauplan. Int. J. Dev. Biol. 42, 453–461 (1998).
    Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234 (2006).
    Manceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B. & Hoekstra, H. E. Convergence in pigmentation at multiple levels: mutations, genes and function. Philos. Trans. R. Soc. B Biol. Sci. 365, 2439–2450 (2010).
    Sears, K. E., Goswami, A., Flynn, J. J. & Niswander, L. A. The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in carnivora. Evol. Dev. 9, 555–565 (2007).
    Pointer, M. A. et al. RUNX2 tandem repeats and the evolution of facial length in placental mammals. BMC Evol. Biol. 12, 103 (2012).
    Newton, A. H., Feigin, C. Y. & Pask, A. J. RUNX2 repeat variation does not drive craniofacial diversity in marsupials. BMC Evol. Biol. 17, (2017).
    Komori, T. et al. Targeted disruption of Cbfa1results in a complete lack of bone formation owing to maturational arrest of osteoblasts. cell 89, 755–764 (1997).
    Javed, A. et al. runt Homology Domain Transcription Factors (Runx, Cbfa, and AML) Mediate Repression of the Bone Sialoprotein Promoter: Evidence for Promoter Context-Dependent Activity of Cbfa Proteins. Mol. Cell. Biol. 21, 2891–2905 (2001).
    Levanon, D. & Groner, Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211–4219 (2004).
    Ball, H. C. et al. Methods and insights from the characterization of osteoprogenitor cells of bats (Mammalia: Chiroptera). Stem Cell Res. 17, 54–61 (2016).
    Ziros, P. G., Basdra, E. K. & Papavassiliou, A. G. Runx2: of bone and stretch. Int. J. Biochem. Cell Biol. 40, 1659–1663 (2008).
    Schroeder, T. M., Jensen, E. D. & Westendorf, J. J. Runx2: A master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Res. Part C Embryo Today Rev. 75, 213–225 (2005).
    Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773–779 (1997).
    Otto, F., Kanegane, H. & Mundlos, S. Mutations in theRUNX2 gene in patients with cleidocranial dysplasia. Hum. Mutat. 19, 209–216 (2002).
    Napierala, D. et al. Mutations and promoter SNPs in RUNX2, a transcriptional regulator of bone formation. Mol. Genet. Metab. 86, 257–268 (2005).
    Hansen, L. et al. RUNX2 analysis of Danish cleidocranial dysplasia families. Clin. Genet. 79, 254–263 (2011).
    Jaruga, A., Hordyjewska, E., Kandzierski, G. & Tylzanowski, P. Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation: Cleidocranial dysplasia and RUNX2. Clin. Genet. 90, 393–402 (2016).
    Shibata, S., Suda, N., Suzuki, S., Fukuoka, H. & Yamashita, Y. An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. J. Anat. 208, 169–177 (2006).
    Fondon, J. W. & Garner, H. R. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. 101, 18058–18063 (2004).
    Rojas, D., Warsi, O. M. & Dávalos, L. M. Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity. Syst. Biol. 65, 432–448 (2016).
    Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. R. Soc. B Biol. Sci. 279, 1797–1805 (2012).
    Baker, R. J., Bininda-Emonds, O. R. P., Mantilla-Meluk, H., Porter, C. A. & Van Den Bussche, R. A. Molecular time scale of diversification of feeding strategy and morphology in New World Leaf-Nosed Bats (Phyllostomidae): a phylogenetic perspective. In Evolutionary History of Bats (eds Gunnell, G. F. & Simmons, N. B.) 385–409 (Cambridge University Press, 2012).
    Santana, S. E., Geipel, I., Dumont, E. R., Kalka, M. B. & Kalko, E. K. V. All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae). PLoS ONE 6, e28584 (2011).
    Phillips, C. D., Butler, B., Fondon, J. W., Mantilla-Meluk, H. & Baker, R. J. Contrasting Evolutionary Dynamics of the Developmental Regulator PAX9, among Bats, with Evidence for a Novel Post-Transcriptional Regulatory Mechanism. PLoS ONE 8, e57649 (2013).
    Freeman, P. W. Macroevolution in Microchiroptera: recoupling morphology and ecology with phylogeny. Evol. Ecol. Res. 2, 317–335 (2000).
    Freeman, P. W. Form, function, and evolution in skulls and teeth of bats. (1998).
    Santana, S. E., Grosse, I. R. & Dumont, E. R. Dietary hardness, loading behavior, and the evolution of skull form in bats. Evolution 66, 2587–2598 (2012).
    Santana, S. E., Dumont, E. R. & Davis, J. L. Mechanics of bite force production and its relationship to diet in bats: Bite force and diet in bats. Funct. Ecol. 24, 776–784 (2010).
    Santana, S. E. & Cheung, E. Go big or go fish: morphological specializations in carnivorous bats. Proc. R. Soc. B Biol. Sci. 283, 20160615 (2016).
    Santana, S. E., Strait, S. & Dumont, E. R. The better to eat you with: functional correlates of tooth structure in bats: Functional correlates of tooth structure in bats. Funct. Ecol. 25, 839–847 (2011).
    Dumont, E. R. The effect of food hardness on feeding behaviour in frugivorous bats (Phyllostomidae): an experimental study. J. Zool. 248, 219–229 (1999).
    Dumont, E. R. The effects of gape angle and bite point on bite force in bats. J. Exp. Biol. 206, 2117–2123 (2003).
    Monteiro, L. R. & Nogueira, M. R. Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution 64, 724–744 (2010).
    Monteiro, L. R. & Nogueira, M. R. Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evol. Biol. 11, 1 (2011).
    Nogueira, M. R., Peracchi, A. L. & Monteiro, L. R. Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Funct. Ecol. 23, 715–723 (2009).
    Nogueira, M. R., Monteiro, L. R., Peracchi, A. L. & de Araújo, A. F. B. Ecomorphological analysis of the masticatory apparatus in the seed-eating bats, genus Chiroderma (Chiroptera: Phyllostomidae). J. Zool. 266, 355–364 (2005).
    Schrago, C. G. Timing the Origin of New World Monkeys. Mol. Biol. Evol. 20, 1620–1625 (2003).
    Fleagle, J. G. Primate adaptation and evolution. (Elsevier - AP, 2013).
    Marroig, G. & Cheverud, J. M. Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? Am. Nat. 163, 417–428 (2004).
    Marroig, G., Cheverud, J. M. & Wainwright, P. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59, 1128–1142 (2005).
    Green, R. E. et al. A draft sequence of the Neandertal genome. science 328, 710–722 (2010).
    Lindskog, C. et al. Analysis of Candidate Genes for Lineage-Specific Expression Changes in Humans and Primates. J. Proteome Res. 13, 3596–3606 (2014).
    Adhikari, K. et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 7, 11616 (2016).
    Sorensen, D. W. et al. Palate Variation and Evolution in New World Leaf-Nosed and Old World Fruit Bats (Order Chiroptera). Evol. Biol. 41, 595–605 (2014).
    Rojas, D. Vale, áNgel, Ferrero, V. & Navarro, L. When did plants become important to leaf-nosed bats? Diversification of feeding habits in the family Phyllostomidae: Evolution of feeding habits in phyllostomid bats. Mol. Ecol. 20, 2217–2228 (2011).
    Ferrarezi, H. & Gimenez, E. Systematic patterns and the evolution of feeding habits in Chiroptera (Archonta: Mammalia). J. Comp. Biol. 1, 75–94 (1996).
    Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats: Bat speciation dynamics. Evolution 69, 1528–1545 (2015).
    De Oliveira, F. B., Porto, A. & Marroig, G. Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution. J. Hum. Evol. 56, 417–430 (2009).
    Goswami, A. Cranial Modularity Shifts during Mammalian Evolution. Am. Nat. 168, 270–280 (2006).
    Porto, A., Oliveira, F. B., Shirai, L. T., de Conto, V. & Marroig, G. The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evol. Biol. 36, 118–135 (2009).
    Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130254–20130254 (2014).
    Porto, A., Shirai, L. T., de Oliveira, F. B. & Marroig, G. Size Variation, Growth Strategies, and the Evolution of Modularity in the Mammalian Skull. Evolution 67, 3305–3322 (2013).
    Marroig, G., Shirai, L. T., Porto, A., de Oliveira, F. B. & De Conto, V. The Evolution of Modularity in the Mammalian Skull II: Evolutionary Consequences. Evol. Biol. 36, 136–148 (2009).
    Steppan, S. J., Phillips, P. C. & Houle, D. Comparative quantitative genetics: evolution of the G matrix. Trends Ecol. Evol. 17, 320–327 (2002).
    Smith, K. K. Comparative Patterns of Craniofacial Development in Eutherian and Metatherian Mammals. Evolution 51, 1663 (1997).
    Koyabu, D. et al. Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat. Commun. 5, (2014).
    Dumont, E. R. et al. Selection for Mechanical Advantage Underlies Multiple Cranial Optima in New World Leaf-Nosed Bats. Evolution 68-5, 1436–1449 (2014).
    Alberch, P. From genes to phenotype: dynamical systems and evolvability. Genetica 84, 5–11 (1991).
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Marroig, G. & Cheverud, J. M. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution 55, 2576–2600 (2001).
    Dumont, E. R. Patterns of Diversity in Cranial Shape Among Plant-Visiting Bats. Acta Chiropterologica 6, 59–74 (2004).
    Lartillot, N. & Poujol, R. A Phylogenetic Model for Investigating Correlated Evolution of Substitution Rates and Continuous Phenotypic Characters. Mol. Biol. Evol. 28, 729–744 (2011).
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence. Am. Nat. 160, 712–726 (2002).
    Shirai, L. T. & Marroig, G. Skull modularity in neotropical marsupials and monkeys: size variation and evolutionary constraint and flexibility. J. Exp. Zoolog. B Mol. Dev. Evol. 314B, 663–683 (2010).