Ver registro no DEDALUS
Exportar registro bibliográfico



Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture (2018)

  • Authors:
  • USP Schools: ESALQ
  • DOI: 10.1038/s41598-018-31175-1
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-31175-1 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      JANKOWSKI, KathiJo; NEILL, Christopher; DAVIDSON, Eric A; et al. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports, Heidelberg, Springer Nature, v. 8, n. 1, p. 1-11, 2018. Disponível em: < > DOI: 10.1038/s41598-018-31175-1.
    • APA

      Jankowski, K. J., Neill, C., Davidson, E. A., Macedo, M. N., Costa Júnior, C., Galford, G. L., et al. (2018). Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports, 8( 1), 1-11. doi:10.1038/s41598-018-31175-1
    • NLM

      Jankowski KJ, Neill C, Davidson EA, Macedo MN, Costa Júnior C, Galford GL, Santos LM, Lefebvre P, Nunes D, Cerri CEP, McHorney R, O’Connell C, Coe MT. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture [Internet]. Scientific Reports. 2018 ; 8( 1): 1-11.Available from:
    • Vancouver

      Jankowski KJ, Neill C, Davidson EA, Macedo MN, Costa Júnior C, Galford GL, Santos LM, Lefebvre P, Nunes D, Cerri CEP, McHorney R, O’Connell C, Coe MT. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture [Internet]. Scientific Reports. 2018 ; 8( 1): 1-11.Available from:

    Referências citadas na obra
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    Cassman, K. G. Ecological intensification of maize-based cropping systems. Better Crops 101 (2017).
    Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 67, 386–391 (2017).
    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28, 315–358 (2003).
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
    Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009).
    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).
    Turner, R. E. & Rabalais, N. N. Linking landscape and water quality in the Mississippi River Basin for 200 years. Bioscience 53, 563–572 (2003).
    Matson, P. A., Naylor, R. & Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280, 112–115 (1998).
    Robertson, G. P. & Vitousek, P. M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).
    Battye, W., Aneja, W. P. & Schlesinger, W. H. Is nitrogen the next carbon? Earths Future 5 (2017).
    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. 107, 16732–16737 (2010).
    Spera, S. A. et al. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 9, 064010 (2014).
    Palm, C., Neill, C., Lefebvre, P. & Tully, K. Targeting Sustainable Intensification of Maize-Based Agriculture in EastAfrica. Trop. Conserv. Sci. 10, 194008291772067 (2017).
    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Annu. Rev. Environ. Resour. 34, 179–204 (2009).
    Pires, M. V., da Cunha, D. A., de Matos Carlos, S. & Costa, M. H. Nitrogen-Use Efficiency, Nitrous Oxide Emissions, and Cereal Production in Brazil: Current Trends and Forecasts. PLOS ONE 10, e0135234 (2015).
    Neill, C. et al. Watershed responses to Amazon soya bean cropland expansion and intensification. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120425–20120425 (2013).
    Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).
    Neill, C. & Macedo, M. N. The rise of Brazil’s globally-connected Amazon soybean agriculture. In Global Latin America: Into the Twenty-First Century (eds Gutman, M. & Lesser, J.) 167–186 (University of California Press, 2016).
    Nepstad, D. et al. The end of deforestation in the Brazilian Amazon. Science 326, 1350–1351 (2009).
    Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. 109, 1341–1346 (2012).
    ABC-Brasil. Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura: plano ABC (Agricultura de Baixa Emissão de Carbono; ABC). (Ministério daAgricultura, Pecuária e Abastecimento, Ministério do Desenvolvimento Agrário, coordenação da Casa Civil da Presidência da República, 2012).
    Federative Republic of Brazil. Intended Nationally Determined Contributions Towards Achieving the Objective of the United Nations Framework Convention on Climate Change. (2015).
    Scheffler, R., Neill, C., Krusche, A. V. & Elsenbeer, H. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric. Ecosyst. Environ. 144, 281–289 (2011).
    Hickman, J. E., Tully, K. L., Groffman, P. M., Diru, W. & Palm, C. A. A potential tipping point in tropical agriculture: Avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya: Non-linear N2O in tropical agriculture. J. Geophys. Res. Biogeosciences 120, 938–951 (2015).
    O’Connell, C. Ecological Tradeoffs to an Agricultural Amazonia: Investigating the effects of increased agricultural production on Amazonia’s contribution to global climate and nitrogen cycling. (University of Minnesota, 2015).
    Riskin, S. H. et al. Solute and sediment export from Amazon forest and soybean headwater streams. Ecol. Appl. 27, 193–207 (2017).
    Galford, G. L. et al. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proc. Natl. Acad. Sci. 107, 19649–19654 (2010).
    Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management. Ambio 31, 132–140 (2002).
    CONAB. Séries Históricas de Area Plantada, Produtividade e Produção, Relativas às Safraas 1976/77 a 2015/16 de Grãos (2017).
    Soratto, R., Pereira, M., Costa, T. & Lampert, V. Fontes alternativas e doses de nitrogênio no milho safrinha em sucessâo á soja. Revista Ciênca Agronômica 41(4), 511–518 (2010).
    SEEG. System for Estimating Greenhouse Gas Emissions in Brazil (2017).
    Snyder, C. S. & Bruulsema, T. W. Nutrient use efficiency and effectiveness in North America. Publ. Int. Plant Nutr. Inst. IPNI (2007).
    Figueira, A. M. E. S., Davidson, E. A., Nagy, R. C., Riskin, S. H. & Martinelli, L. A. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the Brazilian Amazon region: soil n and c in soybean chronosequence. J. Geophys. Res. Biogeosciences 121, 2520–2529 (2016).
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature, (2015).
    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. 111, 9199–9204 (2014).
    Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014).
    Meurer, K. H. E. et al. Direct nitrous oxide (N2O) fluxes from soils under different land use in Brazil—a critical review. Environ. Res. Lett. 11, 023001 (2016).
    McSwiney, C. P. & Robertson, G. P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob. Change Biol. 11, 1712–1719 (2005).
    Hoben, J. P., Gehl, R. J., Millar, N., Grace, P. R. & Robertson, G. P. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest: Nonlinear Nitrous Oxide (N2O) Response To Nitrogen Fertilizer. Glob. Change Biol. 17, 1140–1152 (2011).
    Varella, R. F. et al. Soil fluxes of CO2, CO, NO, and N2O from an old pasture and from native Savanna in Brazil. Ecol. Appl. 14, S221–S231 (2004).
    Carvalho, J. L. N. et al. Crop-pasture rotation: A strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agric. Ecosyst. Environ. 183, 167–175 (2014).
    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).
    Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds Stocker, T. F. et al.) (Cambridge University Press, 2013).
    Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50, 667–680 (2000).
    Hickman, J. E. et al. Nonlinear response of nitric oxide fluxes to fertilizer inputs and the impacts of agricultural intensification on tropospheric ozone pollution in Kenya. Glob. Change Biol. 23, 3193–3204 (2017).
    Robertson, D. M. & Saad, D. A. SPARROW Models Used to Understand Nutrient Sources in the Mississippi/Atchafalaya River Basin. J. Environ. Qual. 42, 1422 (2013).
    Brooks, J. R., Barnard, H. R., Coulombe, R. & McDonnell, J. J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 3, 100–104 (2009).
    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).
    McDonnell, J. J. The two water worlds hypothesis: ecohydrological separation of water between streams and trees? WIREs Water 1, 323–329 (2014).
    Tully, K. L., Hickman, J., McKenna, M., Neill, C. & Palm, C. A. Effects of fertilizer on inorganic soil N in East Africa maize systems: vertical distributions and temporal dynamics. Ecol. Appl. 26, 1907–1919 (2016).
    Russo, T. A., Tully, K., Palm, C. & Neill, C. Leaching losses from Kenyan maize cropland receiving different rates of nitrogen fertilizer. Nutr. Cycl. Agroecosystems 108, 195–209 (2017).
    Schroth, G. L. et al. Subsoil accumulation of mineral nitrogen under polyculture and monoculture plantations, fallow and primary forest in a ferralitic Amazonian upland soil. Agric. Ecosyst. Environ. 75, 109–120 (1999).
    Gillman, B. P. & Uehara, G. Charge characteristics of soils with variable and permanent charge minerals: II. Experimental. Soil Sci. Soc. Am. J. 44, 252–255 (1980).
    Sollins, P., Robertson, G. P. & Uehara, G. Nutrient mobility in variable and permanent charge soils. Biogeochemistry 6, 181–199 (1988).
    Wong, M. T. F., Hughes, R. & Rowell, D. L. Retarded leaching of nitrate in acid soils from the tropics: measurement of the effective anion exchange capacity. J. Soil Sci. 41, 655–663 (1990).
    Feldpausch, T. R. et al. Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southeast Amazonia. Glob. Change Biol. 16, 1793–1805 (2010).
    Lehmann, J., Lilienfein, J., Rebel, K., do Carmo Lima, S. & Wilcke, W. Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. Soil Use Manag. 20, 163–172 (2004).
    Nepstad, D. C. et al. The deep-soil link between water and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).
    Deacon, J., Lee, C., Norman, J. & Reutter, D. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1963–2016. US Geol. Surv. (2017).
    Riskin, S. H. et al. The fate of phosphorus fertilizer in Amazon soya bean fields. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120154–20120154 (2013).
    Dias, L. C. P., Macedo, M. N., Costa, M. H., Coe, M. T. & Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 4, 108–122 (2015).
    Figueira, A. M. S. O culutivo de soja na regiao sudeste da Amazonia e suas implicacoes na dinamica de nitrogenio. (Universidade de Sao Paulo, 2013).
    Davidson, E. A., Savage, K., Verchot, L. V. & Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113, 21–37 (2002).
    Venterea, R. T., Burger, M. & Spokas, K. A. Nitrogen Oxide and Methane Emissions under Varying Tillage and Fertilizer Management. J. Environ. Qual. 34, 1467 (2005).
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. (Springer-Verlag, 2002).
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).