Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2-rGO heterostructure (2018)

  • Authors:
  • USP affiliated authors: MASTELARO, VALMOR ROBERTO - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s10854-018-9799-0
  • Subjects: ESPECTROSCOPIA; SENSOR
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10854-018-9799-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BYZYNSKI, Gabriela; VOLANTI, Diogo P.; RIBEIRO, Cauê; MASTELARO, Valmor Roberto; LONGO, Elson. Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2-rGO heterostructure. Journal of Materials Science: Materials in Electronics, New York, Springer, v. 29, n. 19, p. 17022-17037, 2018. Disponível em: < http://dx.doi.org/10.1007/s10854-018-9799-0 > DOI: 10.1007/s10854-018-9799-0.
    • APA

      Byzynski, G., Volanti, D. P., Ribeiro, C., Mastelaro, V. R., & Longo, E. (2018). Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2-rGO heterostructure. Journal of Materials Science: Materials in Electronics, 29( 19), 17022-17037. doi:10.1007/s10854-018-9799-0
    • NLM

      Byzynski G, Volanti DP, Ribeiro C, Mastelaro VR, Longo E. Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2-rGO heterostructure [Internet]. Journal of Materials Science: Materials in Electronics. 2018 ; 29( 19): 17022-17037.Available from: http://dx.doi.org/10.1007/s10854-018-9799-0
    • Vancouver

      Byzynski G, Volanti DP, Ribeiro C, Mastelaro VR, Longo E. Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2-rGO heterostructure [Internet]. Journal of Materials Science: Materials in Electronics. 2018 ; 29( 19): 17022-17037.Available from: http://dx.doi.org/10.1007/s10854-018-9799-0

    Referências citadas na obra
    F. Pei, S. Xu, W. Zuo et al., Effective improvement of photocatalytic hydrogen evolution via a facile in-situ solvothermal N-doping strategy in N-TiO2/N-graphene nanocomposite. Int. J. Hydrog. Energy 39, 6845–6852 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.173
    P. Fernández-Ibáñez, M.I. Polo-López, S. Malato et al., Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem. Eng. J. 261, 36–44 (2014). https://doi.org/10.1016/j.cej.2014.06.089
    S. Huang, Z. Si, X. Li et al., A novel Au/r-GO/TNTs electrode for H2O2, O2 and nitrite detection. Sen. Actuators B 234, 264–272 (2016). https://doi.org/10.1016/j.snb.2016.04.167
    Q. Xiang, B. Cheng, J. Yu, Graphene-based photocatalysts for solar-fuel generation. Angew Chem. Int. Ed. (2015). https://doi.org/10.1002/anie.201411096
    Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782 (2012). https://doi.org/10.1039/c1cs15172j
    J. Liu, H. Bai, Y. Wang et al., Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater. 20, 4175–4181 (2010). https://doi.org/10.1002/adfm.201001391
    A.H. Cheshme Khavar, G. Moussavi, A.R. Mahjoub, The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: catalyst characterization and acetaminophen degradation and mineralization. Appl. Surf. Sci. 440, 963–973 (2018). https://doi.org/10.1016/j.apsusc.2018.01.238
    N. Sun, J. Ma, C. Wang et al., A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance. Superlatt. Microstruct. 121, 1–8 (2018). https://doi.org/10.1016/J.SPMI.2018.07.017
    M. Dhanasekar, V. Jenefer, R.B. Nambiar et al., Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater. Res. Bull. 97, 238–243 (2018). https://doi.org/10.1016/j.materresbull.2017.08.056
    A.V.F.M.V. Ramana, R.S.T. Jadhav, G.S.G. Dae, Y. Kim, TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: effect of substrate. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9146-5
    B. Chai, J. Li, Q. Xu, K. Dai, Facile synthesis of reduced graphene oxide/WO3 nanoplates composites with enhanced photocatalytic activity. Mater. Lett. 120, 177–181 (2014). https://doi.org/10.1016/j.matlet.2014.01.094
    M. Long, Y. Qin, C. Chen et al., Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with Graphene Oxide. J. Phys. Chem. C 117, 16734–16741 (2013)
    M. Andreozzi, M.G. Álvarez, S. Contreras et al., Treatment of saline produced water through photocatalysis using rGO–TiO2 nanocomposites. Catal Today (2018). https://doi.org/10.1016/j.cattod.2018.04.048
    Y. Yuan, Y. Leigh, A. Xuchuan, Experimental and theoretical studies of gold nanoparticle decorated zinc oxide nanoflakes with exposed {10 0} facets for butylamine sensing. Sens. Actuators B (2016). https://doi.org/10.1016/j.snb.2016.02.091
    D. Chen, H. Zhang, S. Hu, J. Li, Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO–TiO2 nanocomposites. J. Phys. Chem. C 112, 117–122 (2008). https://doi.org/10.1021/jp077236a
    A. Habib, T. Shahadat, N.M. Bahadur et al., Synthesis and characterization of ZnO–TiO2 nanocomposites and their application as photocatalysts. Int. Nano Lett. 3, 1–8 (2013). https://doi.org/10.1186/2228-5326-3-5
    A.K. Geim, K.S.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
    A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877
    D.P. Volanti, D. Keyson, J.A. Varela, E. Longo, Aparato assistido por microondas para síntese hidrotérmica de óxidos nanoestruturados. Universidade Estadual Paulista And Universidade Federal de São Carlos (Brasil). Br N. Pi0815393-0 07 Dez. 2010 (2008)
    G.B. Soares, B. Bravin, C.M.P. Vaz, C. Ribeiro, Facile synthesis of N-doped TiO2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties. Appl. Catal. B 106, 287–294 (2011). https://doi.org/10.1016/j.apcatb.2011.05.018
    M. Dawson, G.B. Soares, C. Ribeiro, Influence of calcination parameters on the synthesis of N-doped TiO2 by the polymeric precursors method. J. Solid State Chem. 215, 211–218 (2014). https://doi.org/10.1016/j.jssc.2014.03.044
    S.A. Bakar, G. Byzynski, C. Ribeiro, Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet. J. Alloys Compd. 666, 38–49 (2016). https://doi.org/10.1016/j.jallcom.2016.01.112
    H. Wang, H. Gao, M. Chen et al., Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl. Surf. Sci. 360, 840–848 (2016). https://doi.org/10.1016/j.apsusc.2015.11.075
    F. Liu, X. Yan, X. Chen et al., Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243–249 (2016). https://doi.org/10.1016/j.cattod.2015.07.012
    K.H. Leong, L.C. Sim, D. Bahnemann et al., Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. Appl. Mater. 3, 104503 (2015). https://doi.org/10.1063/1.4926454
    M.Q. Yang, Y.J. Xu, Basic principles for observing the photosensitizer role of graphene in the graphene-semiconductor composite photocatalyst from a case study on graphene-ZnO. J. Phys. Chem. C 117, 21724–21734 (2013). https://doi.org/10.1021/jp408400c
    J. Qin, X. Zhang, C. Yang et al., ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.09.043
    Y. Zhang, C. Xie, F.L. Gu et al., Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly(3-hexylthiophene). J. Hazard. Mater. 315, 23–34 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.068
    L.-L. Tan, W.-J. Ong, S.-P. Chai et al., Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B 179, 160–170 (2015). https://doi.org/10.1016/j.apcatb.2015.05.024
    A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem. A 22, 153–159 (2016). https://doi.org/10.1002/chem.201503110
    K. Dhara, T. Ramachandran, B.G. Nair, T.G. Satheesh Babu, Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J. Electroanal. Chem. 743, 1–9 (2015). https://doi.org/10.1016/j.jelechem.2015.02.005
    H. Yang, C. Shan, F. Li et al., Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. (2009). https://doi.org/10.1039/b905085j
    X. Bai, C. Sun, D. Liu et al., Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl. Catal. B 204, 11–20 (2017). https://doi.org/10.1016/j.apcatb.2016.11.010
    H. Sun, S. Liu, S. Liu, S. Wang, A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue. Appl. Catal. B 146, 162–168 (2014). https://doi.org/10.1016/j.apcatb.2013.03.027
    M.E.D.G. Azenha, H.D. Burrows, L.M. Canle et al., Kinetic and mechanistic aspects of the direct photodegradation of atrazine, atraton, ametryn and 2-hydroxyatrazine by 254 nm light in aqueous solution. J. Phys. Org. Chem. 16, 498–503 (2003). https://doi.org/10.1002/poc.624
    W. Wang, J. Yu, Q. Xiang, B. Cheng, Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air. Appl. Catal. B 119–120, 109–116 (2012). https://doi.org/10.1016/j.apcatb.2012.02.035
    K. Zhou, Y. Zhu, X. Yang et al., Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. N. J. Chem. 35, 353–359 (2011)
    V.R. Posa, V. Annavaram, J.R. Koduru et al., Preparation of graphene–TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. J. Exp. Nanosci. 11, 722–736 (2016). https://doi.org/10.1080/17458080.2016.1144937
    G. Peng, J.E. Ellis, G. Xu et al., In situ grown TiO2 nanospindles facilitate the formation of holey reduced graphene oxide by photodegradation. ACS Appl. Mater. Interfaces 8, 7403–7410 (2016). https://doi.org/10.1021/acsami.6b01188
    G. Byzynski, C. Ribeiro, E. Longo, Blue to yellow photoluminescence emission and photocatalytic activity of nitrogen doping in TiO2 powders. Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/831930
    E. Cui, G. Lu, Enhanced surface electron transfer by fabricating a core/shell Ni@NiO cluster on TiO2 and its role on high efficient hydrogen generation under visible light irradiation. Int J Hydrog. Energy 39, 8959–8968 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.258
    D. Martín-Yerga, E.C. Rama, A. Costa-García, Electrochemical characterization of ordered mesoporous carbon screen-printed electrodes. J. Electrochem. Soc. 163, B176–B179 (2016). https://doi.org/10.1149/2.0871605jes
    Soares GB, Ribeiro RAP, De Lazaro SR, Ribeiro C, Photoelectrochemical and theoretical investigation of the photocatalytic activity of TiO2: N. RSC Adv. (2016). https://doi.org/10.1039/c6ra15825k
    J. Low, J. Yu, M. Jaroniec et al., Heterojunction photocatalysts. Adv. Mater. (2017). https://doi.org/10.1002/adma.201601694
    G.B. Soares, R.A.P. Ribeiro, S.R. de Lazaro, C. Ribeiro, Photoelectrochemical and theoretical investigation of the photocatalytic activity of TiO2: N. RSC Adv. (2016). https://doi.org/10.1039/c6ra15825k
    P. Wang, S. Zhan, Y. Xia et al., The fundamental role and mechanism of reduced graphene oxide in rGO/Pt–TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B 207, 335–346 (2017). https://doi.org/10.1016/j.apcatb.2017.02.031
    K.S. Divya, M.M. Xavier, P.V. Vandana et al., A quaternary TiO2/ZnO/RGO/Ag nanocomposite with enhanced visible light photocatalytic performance. N. J. Chem. 41, 6445–6454 (2017). https://doi.org/10.1039/C7NJ00495H
    Y. Yang, Q. Jin, D. Mao et al., Dually ordered porous TiO2–rGO composites with controllable light absorption properties for efficient solar energy conversion. Adv. Mater. (2016). https://doi.org/10.1002/adma.201604795
    X. Li, R. Shen, S. Ma et al., Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53–107 (2018). https://doi.org/10.1016/j.apsusc.2017.08.194