Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A Symbolic–Numerical Method for Integration of DAEs Based on Geometric Control Theory (2014)

  • Authors:
  • USP affiliated authors: SILVA, PAULO SERGIO PEREIRA DA - EP
  • USP Schools: EP
  • DOI: 10.1007/s40313-014-0115-9
  • Subjects: SISTEMAS NÃO LINEARES; SISTEMAS DE CONTROLE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s40313-014-0115-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FREITAS, Celso Bernardo da Nóbrega; SILVA, Paulo Sérgio Pereira da. A Symbolic–Numerical Method for Integration of DAEs Based on Geometric Control Theory. Journal of Control, Automation and Electrical Systems[S.l.], Springer, v. 25, n. 4, p. 400-412, 2014. Disponível em: < https://doi.org/10.1007/s40313-014-0115-9 > DOI: 10.1007/s40313-014-0115-9.
    • APA

      Freitas, C. B. da N., & Silva, P. S. P. da. (2014). A Symbolic–Numerical Method for Integration of DAEs Based on Geometric Control Theory. Journal of Control, Automation and Electrical Systems, 25( 4), 400-412. doi:10.1007/s40313-014-0115-9
    • NLM

      Freitas CB da N, Silva PSP da. A Symbolic–Numerical Method for Integration of DAEs Based on Geometric Control Theory [Internet]. Journal of Control, Automation and Electrical Systems. 2014 ; 25( 4): 400-412.Available from: https://doi.org/10.1007/s40313-014-0115-9
    • Vancouver

      Freitas CB da N, Silva PSP da. A Symbolic–Numerical Method for Integration of DAEs Based on Geometric Control Theory [Internet]. Journal of Control, Automation and Electrical Systems. 2014 ; 25( 4): 400-412.Available from: https://doi.org/10.1007/s40313-014-0115-9

    Referências citadas na obra
    Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations and differential-algebraic equations. Miscellaneous titles in applied mathematics series. Society for Industrial and Applied Mathematics. http://www.ams.org/mathscinet-getitem?mr=1638643 .
    Baum, A., & Mehrmann, V. (2013). Numerical integration of positive linear differential-algebraic systems. Numerische Mathematik, 124(2), 279–307. doi: 10.1007/s00211-013-0514-z .
    Brenan, K. E., Campbell, S. L. V., Campbell, S. L., & Petzold, L. R. (1996). Numerical solution of initial-value problems in differential-algebraic equations. Classics in applied mathematics (Vol. 14). Society for Industrial and Applied Mathematics. doi: 10.1137/1.9781611971224 .
    Brugnano, L., Magherini, C., & Mugnai, F. (2006). Blended implicit methods for the numerical solution of DAE problems. Journal of Computational and Applied Mathematics, 189(1–2), 34–50. doi: 10.1016/j.cam.2005.05.005 .
    Burden, R. L., & Faires, J. D. (2010). Numerical analysis. Cengage learning. Brooks/Cole.
    da Silva, P. S. P., Delaleau, E., & de Souza, I. S. (2005). On geometric control and numeric integration of DAE’s. In Preprints of the 16th IFAC World Congress. Prague, République tchèque.
    de Swart, J. J. B., Lioen, W. M., & van der Veen, W. A. (1998). Specification of PSIDE. Report MAS. http://walter.lioen.com/papers/SLV98.pdf .
    de Figueiredo, D. (2002). Equações diferenciais aplicadas. (Coleção matemática universitária). Instituto Nacional de Matemática Pura e Aplicada.
    Freitas, C. B. N. (2011). Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico. (Master’s degree thesis), Instituto de Matemática e Estatística, Universidade de São Paulo.
    Freitas, C. B. N. & Silva, P. S. P. (2012). A symbolic-numerical method for integration of DAEs based on geometric control theory. In XIX Brazilian Conference on Automation (CBA 2012) (pp. 346–351). Campina Grande, PB, Brazil.
    Gear, C., & Petzold, L. (1984). Ode methods for the solution of differential/algebraic systems. SIAM Journal on Numerical Analysis, 21(4), 716–728. doi: 10.1137/0721048 .
    Haddouni, M., Acary, V., & Beley, J. D. (2013). Comparison of index-3, index-2 and index-1 DAE solvers for nonsmooth multibody systems with unilateral and bilateral constraints. In Multibody Dynamics 2013. Eccomas, Zagreb, Croatie.
    Hairer, E. (1999). Stiff differential equations solved by Radau methods. Journal of Computational and Applied Mathematics, 111(1–2), 93–111. doi: 10.1016/s0377-0427(99)00134-x .
    Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and differential-algebraic problems. Springer series in computational mathematics (Vol. 14). Springer-Verlag.
    Halilovič, M., Vrh, M., & Štok, B. (2013). Niceh: A higher-order explicit numerical scheme for integration of constitutive models in plasticity. Engineering with Computers, 29(1), 55–70. doi: 10.1007/s00366-011-0243-9 .
    Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized Adams methods: Properties and implementation techniques. Applied Numerical Mathematics, 28, 107–126. doi: 10.1016/S0168-9274(98)00039-7 .
    Isidori, A. (1995) Nonlinear control systems. Communications and control engineering (Vol. 1). Berlin: Springer.
    Kar, T. K., & Chakraborty, K. (2010). Bioeconomic modelling of a prey predator system using differential algebraic equations. International Journal of Engineering, Science and Technology, 2(1), 13–34.
    Khalil, H. K. (2002). Nonlinear systems. Prentice Hall.
    Kumar, A., & Daoutidis, P. (1995). Control of nonlinear differential-algebraic-equation systems with disturbances. Industrial & Engineering Chemistry Research, 34(6), 2060–2076. doi: 10.1021/ie00045a015 .
    Kunkel, P., & Mehrmann, V. L. (2006). Differential-algebraic equations: Analysis and numerical solution. EMS textbooks in mathematics. European Mathematical Society. doi: 10.4171/017 .
    Masarati, P., Morandini, M., & Fumagalli, A. (2014). Control constraint of underactuated aerospace systems. Journal of Computational and Nonlinear Dynamics, 9(2). doi: 10.1115/1.4025629 .
    Mazzia, F., & Magherini, C. (2008). Test set for initial value problem solvers, release 2.4. Technical Report 4, Department of Mathematics, University of Bari, Italy. http://pitagora.dm.uniba.it/testset .
    Nijmeijer, H., & van der Schaft, A. (1990). Nonlinear dynamical control systems. Springer.
    Pontryagin, L. (1962). Ordinary differential equations. Adiwes international series in mathematics. Pergamon: Addison-Wesley.
    Schneider, S. (1994). Intégration de Systèmes D’équations Différentielles Raides Et Différentielles-algébriques Par Des Méthodes de Collocations Et Méthodes Générales Linéaires. Atelier de reproduction de la Section de physique.
    Soltanian, F., Dehghan, M., & Karbassi, S. M. (2010). Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications. International Journal of Computer Mathematics, 87(9), 1950–1974. doi: 10.1080/00207160802545908 .
    Stortelder, W. J. H. (1998). Parameter estimation in nonlinear dynamic systems. PhD Thesis, University of Amsterdam.
    Strang, G. (2006). Linear algebra and its applications. Thomson, Brooks/Cole.
    Takamatsu, M., & Iwata, S. (2010). Index characterization of differential-algebraic equations in hybrid analysis for circuit simulation. International Journal of Circuit Theory and Applications, 38(4), 419–440. doi: 10.1002/cta.577 .
    Wang, K., & Crow, M. (2011). Numerical simulation of stochastic differential algebraic equations for power system transient stability with random loads. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, (pp. 1–8).
    Warner, F. W. (1971). Foundations of differentiable manifolds and Lie Groups. Glenview, IL: Scott, Foresman and Company.