Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

CF4CF: recommending collaborative filtering algorithms using collaborative filtering (2018)

  • Authors:
  • USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
  • USP Schools: ICMC
  • DOI: 10.1145/3240323.3240378
  • Subjects: SISTEMAS DE INFORMAÇÃO; APRENDIZADO COMPUTACIONAL
  • Keywords: Collaborative Filtering; Metalearning; Label Ranking
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Conference titles: ACM Conference on Recommender Systems - RecSys
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1145/3240323.3240378 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CUNHA, Tiago; SOARES, Carlos; CARVALHO, Andre Carlos Ponce de Leon Ferreira de. CF4CF: recommending collaborative filtering algorithms using collaborative filtering. Anais.. New York: ACM, 2018.Disponível em: DOI: 10.1145/3240323.3240378.
    • APA

      Cunha, T., Soares, C., & Carvalho, A. C. P. de L. F. de. (2018). CF4CF: recommending collaborative filtering algorithms using collaborative filtering. In Proceedings. New York: ACM. doi:10.1145/3240323.3240378
    • NLM

      Cunha T, Soares C, Carvalho ACP de LF de. CF4CF: recommending collaborative filtering algorithms using collaborative filtering [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1145/3240323.3240378
    • Vancouver

      Cunha T, Soares C, Carvalho ACP de LF de. CF4CF: recommending collaborative filtering algorithms using collaborative filtering [Internet]. Proceedings. 2018 ;Available from: http://dx.doi.org/10.1145/3240323.3240378

    Referências citadas na obra
    Gediminas Adomavicius and Jingjing Zhang. 2012. Impact of data characteristics on recommender systems performance. ACM Management Information Systems 3, 1 (2012), 1--17.
    Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta. 2009. Metalearning: Applications to Data Mining (1 ed.). Springer Publishing.
    Pavel Brazdil, Carlos Soares, and Joaquim da Costa. 2003. Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time. Machine Learning 50, 3 (2003), 251--277.
    Tiago Cunha, Carlos Soares, and André C.P.L.F. Carvalho. 2017. Metalearning for Context-aware Filtering: Selection of Tensor Factorization Algorithms. In Proceedings of the Eleventh ACM Conference on Recommender Systems (RecSys '17). ACM, New York, NY, USA, 14--22.
    Tiago Cunha, Carlos Soares, and André C.P.L.F. de Carvalho. 2016. Selecting Collaborative Filtering algorithms using Metalearning. In ECML-PKDD. 393--409.
    Tiago Cunha, Carlos Soares, and Andre C.P.L.F. de Carvalho. 2017. Recommending Collaborative Filtering algorithms using subsampling landmarkers. In Discovery Science. 189--203.
    Tiago Cunha, Carlos Soares, and André C.P.L.F. de Carvalho. 2018. A Label Ranking approach for selecting rankings of Collaborative Filtering algorithms. In ACM Symposium on Applied Computing. 1393--1395.
    Tiago Cunha, Carlos Soares, and André C.P.L.F. de Carvalho. 2018. Metalearning and Recommender Systems: A literature review and empirical study on the algorithm selection problem for Collaborative Filtering. Information Sciences 423 (2018), 128--144.
    Simon Dooms, Toon De Pessemier, and Luc Martens. 2013. MovieTweetings: a Movie Rating Dataset Collected From Twitter. In CrowdRec at RecSys 2013.
    Michael Ekstrand and John Riedl. 2012. When Recommenders Fail: Predicting Recommender Failure for Algorithm Selection and Combination. ACM RecSys (2012), 233--236.
    Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval 4, 2 (2001), 133--151.
    Josephine Griffith, Colm O'Riordan, and Humphrey Sorensen. 2012. Investigations into user rating information and accuracy in collaborative filtering. In ACM SAC. 937--942.
    GroupLens. 2016. MovieLens datasets. (2016). http://grouplens.org/datasets/movielens/
    Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In IEEE International Conference on Data Mining. 263 -- 272.
    Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker. 2008. Label ranking by learning pairwise preferences. Artificial Intelligence 172, 16--17 (2008), 1897--1916.
    Pawel Matuszyk and Myra Spiliopoulou. 2014. Predicting the Performance of Collaborative Filtering Algorithms. In Web Intelligence, Mining and Semantics. 38:1--38:6.
    Julian McAuley and Jure Leskovec. 2013. Hidden Factors and Hidden Topics: Understanding Rating Dimensions with Review Text. In ACM Conference on Recommender Systems. 165--172.
    Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier. 2000. Meta-Learning by Landmarking Various Learning Algorithms. In International Conference on Machine Learning. 743--750.
    Fãbio Pinto, Carlos Soares, and João Mendes-Moreira. 2016. Towards automatic generation of Metafeatures. In PAKDD. 215--226.
    Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452--461.
    Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-Based Collaborative Filtering Recommendation Algorithms. In International Conference on World Wide Web. 285--295.
    Floarea Serban, Joaquin Vanschoren, and Abraham Bernstein. 2013. A survey of intelligent assistants for data analysis. Comput. Surveys V, 212 (2013), 1--35.
    Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative Filtering beyond the User-Item Matrix. Comput. Surveys 47, 1 (2014), 1--45.
    Carlos Soares. 2015. labelrank: Predicting Rankings of Labels. (2015). https://cran.r-project.org/package=labelrank
    Joaquin Vanschoren. 2010. Understanding machine learning performance with experiment databases. Ph.D. Dissertation. Katholieke Universiteit Leuven.
    Shankar Vembu and Thomas Gärtner. 2010. Label ranking algorithms: A survey. In Preference Learning. 45--64.
    Hongning Wang, Yue Lu, and ChengXiang Zhai. 2011. Latent Aspect Rating Analysis Without Aspect Keyword Supervision. In ACM SIGKDD. 618--626.
    Markus Weimer, Alexandros Karatzoglou, and Alex Smola. 2008. Improving Maximum Margin Matrix Factorization. Machine Learning 72, 3 (2008), 263--276.
    Yahoo! 2016. Webscope datasets. (2016). https://webscope.sandbox.yahoo.com/
    Yelp. 2016. Yelp Dataset Challenge. (2016). https://www.yelp.com/dataset_challenge
    R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU. (2009). http://socialcomputing.asu.edu
    Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005. Improving Recommendation Lists Through Topic Diversification. In Proceedings of the 14th International Conference on World Wide Web. 22--32.