Ver registro no DEDALUS
Exportar registro bibliográfico



Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM2.5) from São Paulo city, Brazil (2018)

  • Authors:
  • USP Schools: IQ; IQ; FM; FCF; FM; FCF
  • DOI: 10.1186/s12989-018-0276-y
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s12989-018-0276-y (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      OLIVEIRA, Antonio Anax Falcão de; OLIVEIRA, Tiago Franco de; DIAS, Michelle Francini; et al. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM2.5) from São Paulo city, Brazil. Particle and Fibre Toxicology, London, v. 15, n. 1, p. 1-19, 2018. Disponível em: < > DOI: 10.1186/s12989-018-0276-y.
    • APA

      Oliveira, A. A. F. de, Oliveira, T. F. de, Dias, M. F., Medeiros, M. H. G. de, Mascio, P. D. I., Veras, M., et al. (2018). Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM2.5) from São Paulo city, Brazil. Particle and Fibre Toxicology, 15( 1), 1-19. doi:10.1186/s12989-018-0276-y
    • NLM

      Oliveira AAF de, Oliveira TF de, Dias MF, Medeiros MHG de, Mascio PDI, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro AP de M. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM2.5) from São Paulo city, Brazil [Internet]. Particle and Fibre Toxicology. 2018 ; 15( 1): 1-19.Available from:
    • Vancouver

      Oliveira AAF de, Oliveira TF de, Dias MF, Medeiros MHG de, Mascio PDI, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro AP de M. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM2.5) from São Paulo city, Brazil [Internet]. Particle and Fibre Toxicology. 2018 ; 15( 1): 1-19.Available from:

    Referências citadas na obra
    Kok TM, Hogervorst JG, Briedé JJ, Van Herwijnen MH, Maas LM, Moonen EJ, et al. Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter. Environ Mol Mutagen. 2005;46:71–80.
    Pope CA III, Dockery DW. 2006 critical review: health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc. 2006;56:709–42.
    Meng Z, Zhang Q. Damage effects of dust storm PM2.5 on DNA in alveolar macrophages and lung cells of rats. Food Chem Toxicol. 2007;45:1368–74.
    Møller P, Folkmann JK, Forchhammer L, Bräuner EV, Danielsen PH, Risom L, et al. Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett. 2008;266:84–97.
    Demetriou CA, Raaschou-Nielsen O, Loft S, Møller P, Vermeulen R, Palli D, et al. Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup Environ Med. 2012;69:619–27.
    Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarènes. Lancet Oncol. 2012;13:663–4.
    Yanagi Y, de Assunção JV, Barrozo LV. The impact of atmospheric particulate matter on cancer incidence and mortality in the city of São Paulo, Brazil. Cad Saúde Pública. 2012;28:1737–48.
    DeMarini DM. Genotoxicity biomarkers associated with exposure to traffic and near-road atmospheres: a review. Mutagenesis. 2013;28:485–505.
    Fajersztajn L, Veras M, Barrozo LV, Saldiva P. Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer. 2013;13:674–8.
    IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Outdoor Air Pollution, vol. 109. Lyon: IARC; 2016. p. 448.
    Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol. 2013;14:813–22.
    Carvalho VSB, Freitas ED, Martins LD, Martins JA, Mazzoli CR, de Fátima Andrade M. Air quality status and trends over the metropolitan area of Sao Paulo, Brazil as a result of emission control policies. Environ Sci Pol. 2015;47:68–79.
    CETESB - Companhia Ambiental do Estado de São Paulo. Qualidade do Ar no Estado de São Paulo 2013. 2013. . Accessed 29 Oct 2017.
    Anderson LG. Ethanol fuel use in Brazil: air quality impacts. Energy Environ Sci. 2009;2:1015.
    Nogueira T, de Souza KF, Fornaro A, Andrade M de F, de Carvalho LRF. On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic tunnels in the metropolitan area of Sao Paulo, Brazil. Atmos Environ. 2015;108:88–97.
    World Health Organization. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005. Summary of Risk Assessment. 2005. . Accessed 12 Mar 2018.
    Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association. Circulation. 2010;121:2331–78.
    Martins LD, Martins JA, Freitas ED, Mazzoli CR, Gonçalves FLT, Ynoue RY, et al. Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions: a model-based study. Air Qual Atmos Health. 2010;3:29–39.
    Samet JM. Some current challenges in research on air pollution and health. Salud Públ Méx. 2014;56:379–85.
    Dybdahl M, Risom L, Bornholdt J, Autrup H, Loft S, Wallin H. Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. Mutat Res Genet Toxicol Environ Mutagen. 2004;562:119–31.
    Riva DR, Magalhães CB, Lopes AA, Lanças T, Mauad T, Malm O, et al. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol. 2011;23:257–67.
    Møller P, Folkmann JK, Danielsen PH, Jantzen K, Loft S. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles. Curr Mol Med. 2012;12:732–45.
    De Martinis BS, Kado NY, Carvalho LRF, Okamoto RA, Gundel LA. Genotoxicity of fractionated organic material in airborne particles from São Paulo, Brazil. Mutat Res. 1999;446:83–94.
    Karlsson HL, Nygren J, Möller L. Genotoxicity of airborne particulate matter: the role of cell-particle interaction and of substances with adduct-forming and oxidizing capacity. Mutat Res Genet Toxicol Environ Mutagen. 2004;565:1–10.
    Bell ML, Dominici F, Ebisu K, Zeger SL, Samet JM. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ Health Perspect. 2007;115:989–95.
    DeMarini DM, Landi S, Tian D, Hanley NM, Li X, Hu F, et al. Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res. 2001;61:6679–81.
    Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review. Mutat Res. 2016;768:27–45.
    Ke S, Liu Q, Yao Y, Zhang X, Sui G. An in vitro cytotoxicities comparison of 16 priority polycyclic aromatic hydrocarbons in human pulmonary alveolar epithelial cells HPAEpiC. Toxicol Lett. 2018;290:10–8.
    Ichinose T, Yajima Y, Nagashima M, Takenoshita S, Nagamachi Y, Sagai M. Lung carcinogenesis and formation of 8-hydroxy-deoxyguanosine in mice by diesel exhaust particles. Carcinogenesis. 1997;18:185–92.
    Loft S, Svoboda P, Kawai K, Kasai H, Sørensen M, Tjønneland A, et al. Association between 8-oxo-7,8-dihydroguanine excretion and risk of lung cancer in a prospective study. Free Radic Biol Med. 2012;52:167–72 Elsevier Inc.
    Obtulowicz T, Swoboda M, Speina E, Gackowski D, Rozalski R, Siomek A, et al. Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients. Mutagenesis. 2010;25:463–71.
    Marnett LJ, Plastaras JP. Endogenous DNA damage and mutation. Trends Genet. 2001;17:214–21.
    Bartsch H, Nair J. New DNA-based biomarkers for oxidative stress and cancer chemoprevention studies. Eur J Cancer. 2000;36:1229–34.
    Doerge DR, Churchwell MI, Fang JL, Beland FA. Quantification of etheno-DNA adducts using liquid chromatography, on-line sample processing, and electrospray tandem mass spectrometry. Chem Res Toxicol. 2000;13:1254–9.
    Loureiro APM, Marques SA, Garcia CCM, Di Mascio P, Medeiros MHG. Development of an on-line liquid chromatography-electrospray tandem mass spectrometry assay to quantitatively determine 1,N2-etheno-2′-deoxyguanosine in DNA. Chem Res Toxicol. 2002;15:1302–8.
    Nair U, Bartsch H, Nair J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med. 2007;43:1109–20.
    Pang B, Zhou X, Yu H, Dong M, Taghizadeh K, Wishnok JS, et al. Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation. Carcinogenesis. 2007;28:1807–13.
    Medeiros MHG. Exocyclic DNA adducts as biomarkers of lipid oxidation and predictors of disease. Challenges in developing sensitive and specific methods for clinical studies. Chem Res Toxicol. 2009;22:419–25.
    Garcia CCM, Freitas FP, Di Mascio P, Medeiros MHG. Ultrasensitive simultaneous quantification of 1,N2 -Etheno-2′-deoxyguanosine and 1,N2 -Propano-2′-deoxyguanosine in DNA by an online liquid chromatography electrospray tandem mass spectrometry assay. Chem Res Toxicol. 2010;23:1851.
    Chen HJ, Lin WP. Quantitative analysis of multiple exocyclic DNA adducts in human salivary dna by stable isotope dilution nanoflow liquid chromatography - nanospray ionization tandem mass spectrometry. Anal Chem. 2011;83:8543–51.
    Garcia CCM, Freitas FP, Sanchez AB, Di Mascio P, Medeiros MHG. Elevated α-methyl-γ-hydroxy-1,N2-propano-2′-deoxyguanosine levels in urinary samples from individuals exposed to urban air pollution. Chem Res Toxicol. 2013;26:1602–4.
    Cui S, Li H, Wang S, Jiang X, Zhang S, Zhang R, et al. Ultrasensitive UPLC-MS-MS method for the quantitation of etheno-DNA adducts in human urine. Int J Environ Res Public Health. 2014;11:10902–14.
    Monien BH, Schumacher F, Herrmann K, Glatt H, Turesky RJ, Chesne C. Simultaneous detection of multiple DNA adducts in human lung samples by isotope-dilution UPLC-MS/MS. Anal Chem. 2015;87:641–8.
    Danielsen PH, Loft S, Jacobsen NR, Jensen KA, Autrup H, Ravanat JL, et al. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter. Toxicol Sci. 2010;118:574–85.
    Danielsen PH, Moller P, Jensen KA, Sharma AK, Wallin H, Bossi R, et al. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem Res Toxicol. 2011;24:168–84.
    Knaapen AM, Güngör N, Schins RPF, Borm PJA, Van Schooten FJ. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis. 2006;21:225–36.
    Bellavia A, Urch B, Speck M, Brook RD, Scott JA, Albetti B, et al. DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments. J Am Heart Assoc. 2013;2:1–11.
    Chen W-L, Lin C-Y, Yan Y-H, Cheng KT, Cheng T-J. Alterations in rat pulmonary phosphatidylcholines after chronic exposure to ambient fine particulate matter. Mol Biosyst. 2014;10:3163–9.
    Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med. 2009;179:572–8.
    Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.
    De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, et al. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int. 2013;59:418–24.
    Bakulski KM, Fallin MD. Epigenetic epidemiology: promises for public health research. Environ Mol Mutagen. 2014;55:171–83.
    Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1:11–9.
    Bender J. Dna methylation and epigenetics. Annu Rev Plant Biol. 2004;55:41–68.
    Magaña AA, Wrobel K, Caudillo YA, Zaina S, Lund G, Wrobel K. High-performance liquid chromatography determination of 5-methyl-2′-deoxycytidine, 2′-deoxycytidine, and other deoxynucleosides and nucleosides in DNA digests. Anal Biochem. 2008;374:378–85.
    Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.
    Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2012;13:7–13.
    Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect. 2009;117:217–22.
    Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, et al. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ Health Perspect. 2011;119:977–82.
    Guo L, Byun H-M, Zhong J, Motta V, Barupal J, Zheng Y, et al. Effects of short-term exposure to inhalable particulate matter on DNA methylation of tandem repeats. Environ Mol Mutagen. 2014;55:322–35.
    Chen R, Meng X, Zhao A, Wang C, Yang C, Li H, et al. DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ Int. 2016;94:614–9.
    Alvarado-Cruz I, Sánchez-Guerra M, Hernández-Cadena L, Vizcaya-Ruiz A, Mugica V, Pelallo-Martínez NA, et al. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment. Mutat Res. 2017;813:27–36.
    Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, et al. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci. 2008;105:605–10.
    Janssen BG, Godderis L, Pieters N, Poels K, Kiciński M, Cuypers A, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol. 2013;10:22.
    Nys S, Duca R, Nawrot T, Hoet P, Meerbeek BV, Landuyt KLV, et al. Temporal variability of global DNA methylation and hydroxymethylation in buccal cells of healthy adults: association with air pollution. Environ Int. 2018;111:301–8.
    Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, et al. Characteristics of DNA methylation changes induced by traffic-related air pollution. Mutat Res. 2016;796:46–53.
    Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 2017;607–608:1103–8.
    Sanchez-Guerra M, Zheng Y, Osorio-Yanez C, Zhong J, Chervona Y, Wang S, et al. Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study. Epigenetics. 2015;10:633–42.
    Somineni HK, Zhang X, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, et al. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol. 2016;137:797–805.e5.
    Mangal D, Vudathala D, Park J-H, Lee SH, Penning TM, Blair IA. Analysis of 7,8-Dihydro-8-oxo-2′-deoxyguanosine in cellular DNA during oxidative stress. Chem Res Toxicol. 2009;22:788–97.
    Loureiro APM, Di Mascio P, Gomes OF, Medeiros MHG. trans,trans-2,4-Decadienal-induced 1,N2-Etheno-2′-deoxyguanosine adduct formation. Chem Res Toxicol. 2000;13:601–9.
    Hillestrøm PR, Weimann A, Poulsen HE. Quantification of urinary etheno-DNA adducts by column-switching LC/APCI-MS/MS. J Am Soc Mass Spectrom. 2006;17:605–10.
    Hofer T, Seo AY, Prudencio M, Leeuwenburgh C. A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol Chem. 2006;387:103–11.
    Sandhu J, Kaur B, Armstrong C, Talbot CJ, Steward WP, Farmer PB, et al. Determination of 5-methyl-2′-deoxycytidine in genomic DNA using high performance liquid chromatography-ultraviolet detection. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:1957–61.
    Kim S, Sioutas C, Chang MC, Gong H. Factors affecting the stability of the performance of ambient fine-particle concentrators. Inhal Toxicol. 2000;12(Suppl 4):281–98.
    Akinaga LMY, Lichtenfels AJ, Carvalho-Oliveira R, Caldini EG, Dolhnikoff M, Silva LFF, et al. Effects of chronic exposure to air pollution from Sao Paulo city on coronary of Swiss mice, from birth to adulthood. Toxicol Pathol. 2009;37:306–14.
    Veras MM, Damaceno-Rodrigues NR, Guimarães Silva RM, Scoriza JN, Saldiva PHN, Caldini EG, et al. Chronic exposure to fine particulate matter emitted by traffic affects reproductive and fetal outcomes in mice. Environ Res. 2009;109:536–43.
    Magalhães D, Bruns RE, de CVasconcellos P. Hidrocarbonetos policíclicos aromáticos como traçadores da queima de cana-de-açúcar: uma abordagem estatística. Quim Nova. 2007;30:577–81.
    Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–21.
    Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250:5475–80.
    Habig WH, Pabst MJ, Fleischner G, Gatmaitan Z, Arias IM, Jakoby WB. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci U S A. 1974;71:3879–82.
    McCord JM, Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem. 1969;244:6056–63.
    Flohé L, Otting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93–104.
    Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.
    Alexander DJ, Collins CJ, Coombs DW, Gilkison IS, Hardy CJ, Healey G, et al. Association of inhalation toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal Toxicol. 2008;20(13):1179–89.
    Ménache MG, Miller FJ, Raabe OG. Particle inhalability curves for humans and small laboratory animals. Ann Occup Hyg. 1995;39(3):317–28.
    CETESB - Companhia Ambiental do Estado de São Paulo. Qualar – Sistema de Informações da Qualidade do Ar (2010). . Accessed 29 Oct 2017.
    Mauad T, Rivero DHRF, De Oliveira RC, Lichtenfels AJDFC, Guimarães ET, De Andre PA, et al. Chronic exposure to ambient levels of urban particles affects mouse lung development. Am J Respir Crit Care Med. 2008;178:721–8.
    Schauer JJ, Lough GC, Shafer MM, Christensen WF, Arndt MF, DeMinter JT, et al. Characterization of metals emitted from motor vehicles. Res Rep Health Eff Inst. 2006;133:77–88.
    Gutiérrez-Castillo ME, Roubicek DA, Cebrián-García ME, De Vizcaya-Ruíz A, Sordo-Cedeño M, Ostrosky-Wegman P. Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen. 2006;47:199–211.
    Huang HB, Lai CH, Chen GW, Lin YY, Jaakkola JJK, Liou SH, et al. Traffic-related air pollution and DNA damage: a longitudinal study in Taiwanese traffic conductors. PLoS One. 2012;7:1–8.
    Sørensen M, Autrup H, Hertel O, Wallin H, Knudsen LE, Loft S. Personal exposure to PM2. 5 and biomarkers of DNA damage. Cancer Epidemiol Biomark Prev. 2003;12:191–6.
    Rossner P, Topinka J, Hovorka J, Milcova A, Schmuczerova J, Krouzek J, et al. An acellular assay to assess the genotoxicity of complex mixtures of organic pollutants bound on size segregated aerosol. Part II: oxidative damage to DNA. Toxicol Lett. 2010;198:312–6.
    Hou L, Zhang X, Zheng Y, Wang S, Dou C, Guo L, et al. Altered methylation in tandem repeat element and elemental component levels in inhalable air particles. Environ Mol Mutagen. 2014;55:256–65.
    Hellack B, Quass U, Beuck H, Wick G, Kuttler W, Schins RPF, et al. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses. Atmos Environ. 2015;105:1–6.
    Valavanidis A, Fiotakis K, Bakeas E, Vlahogianni T. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep. 2005;10:37–51.
    Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, et al. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic Res. 2012;46:367–81.
    Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res. 2014;762:133–66.
    Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res Mol Mech Mutagen. 2005;592:119–37.
    Iwai K, Adachi S, Takahashi M, Moller L, Udagawa T, Mizuno S, et al. Early oxidative DNA damages and late development of lung cancer in diesel exhaust-exposed rats. Environ Res. 2000;84:255–64.
    Risom L, Dybdahl M, Bornholdt J, Vogel U, Wallin H, Møller P, et al. Oxidative DNA damage and defence gene expression in the mouse lung after short-term exposure to diesel exhaust particles by inhalation. Carcinogenesis. 2003;24:1847–52.
    Risom L, Dybdahl M, Møller P, Wallin H, Haug T, Vogel U, et al. Repeated inhalations of diesel exhaust particles and oxidatively damaged DNA in young oxoguanine DNA glycosylase (OGG1) deficient mice. Free Radic Res. 2007;41:172–81.
    Tsurudome Y, Hirano T, Yamato H, Tanaka I, Sagai M, Hirano H, et al. Changes in levels of 8-hydroxyguanine in DNA, its repair and OGG1 mRNA in rat lungs after intratracheal administration of diesel exhaust particles. Carcinogenesis. 1999;20:1573–6.
    Marie-Desvergne C, Maître A, Bouchard M, Ravanat JL, Viau C. Evaluation of DNA adducts, DNA and RNA oxidative lesions, and 3-hydroxybenzo(a)pyrene as biomarkers of DNA damage in lung following intravenous injection of the parent compound in rats. Chem Res Toxicol. 2010;23:1207–14.
    Schmerold I, Niedermu H. Levels of 8-hydroxy-2′-deoxyguanosine in cellular DNA from 12 tissues of young and old Sprague Dawley rats. Exp Gerontol. 2001;36:1375–86.
    ESCODD (European Standards Committee on Oxidative DNA Damage). Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis. 2002;23:2129–33.
    Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, et al. DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci. 1998;95:288–93.
    Kim JY, Mukherjee S, Ngo L, Christiani DC. Urinary 8-hydroxy-2′-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environ Health Perspect. 2004;112:666–71.
    Wei Y, Han I, Shao M, Hu M, Zhang JJ, Tang X. PM 2.5 constituents and oxidative DNA damage in humans. Environ Sci Technol. 2009;43:4757–62.
    Tan C, Lu S, Wang Y, Zhu Y, Shi T, Lin M, et al. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen. Sci Total Environ. 2017;593–594:330–6.
    Calderón-Garcidueñas L, Wen-Wang L, Zhang YJ, Rodriguez-Alcaraz A, Osnaya N, Villarreal-Calderón A, et al. 8-hydroxy-2′-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environ Health Perspect. 1999;107:469–74.
    Magnani ND, Marchini T, Tasat DR, Alvarez S, Evelson PA. Lung oxidative metabolism after exposure to ambient particles. Biochem Biophys Res Commun. 2011;412:667–72.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. New York: Oxford University Press; 2007.
    Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009;77:1303–15.
    Forman HJ, Ursini F, Maiorino M. An overview of mechanisms of redox signaling. J Mol Cell Cardiol. 2014;73:2–9.
    Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal. 2013;18:1165–207.
    Kampfrath T, Maiseyeu A, Ying Z, Shah Z, Deiuliis JA, Xu X, et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res. 2011;108:716–26.
    Garcia CCM, Angeli JPF, Freitas FP, Gomes OF, de Oliveira TF, Loureiro APM, et al. [13C2]-acetaldehyde promotes unequivocal formation of 1,N2-propano-2′-deoxyguanosine in human cells. J Am Chem Soc. 2011;133:9140–3.
    Angeli JPF, Garcia CCM, Sena F, Freitas FP, Miyamoto S, Medeiros MHG, et al. Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radic Biol Med. 2011;51:503–15.
    Herceg Z, Vaissière T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011;6:804–19.
    Ji H, Khurana Hershey GK. Genetic and epigenetic influence on the response to environmental particulate matter. J Allergy Clin Immunol. 2012;129:33–41.
    Silveyra P, Floros J. Air pollution and epigenetics: effects on SP-A and innate host defence in the lung. Swiss Med Wkly. 2012;142:w13579.
    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.
    Doi A, Park I-H, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41:1350–3.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.
    Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 2011;6:e14524 Papavasiliou N, editor.
    Dahl C, Grønbæk K, Guldberg P. Advances in DNA methylation: 5-hydroxymethylcytosine revisited. Clin Chim Acta. 2011;412:831–6.
    Williams K, Christensen J, Helin K. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep. 2011;13:28–35.
    Delatte B, Jeschke J, Defrance M, Bachman M, Creppe C, Calonne E, et al. Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Sci Rep. 2015;5:12714.
    Damiani LA, Yingling CM, Leng S, Romo PE, Nakamura J, Belinsky SA. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res. 2008;68:9005–14.
    Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS. Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics. 2011;6:355–67.
    Xia B, Yang L-Q, Huang H-Y, Pang L, Yang X-F, Yi Y-J, et al. Repression of biotin-related proteins by benzo[a]pyrene-induced epigenetic modifications in human bronchial epithelial cells. Int J Toxicol. 2016;35:336–43.
    Jiang C-L, He S-W, Zhang Y-D, Duan H-X, Huang T, Huang Y-C, et al. Air pollution and DNA methylation alterations in lung cancer: a systematic and comparative study. Oncotarget. 2017;8:1369–91.
    Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, et al. Global 5-hydroxymethylcytosine content is signi cantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget. 2011;2:627–37.
    Lisanti S, Omar WA, Tomaszewski B, De Prins S, Jacobs G, Koppen G, et al. Comparison of methods for quantification of global DNA methylation in human cells and tissues. Plos One. 2013;8:e79044.
    Bock C, Halbritter F, Carmona FJ, Tierling S, Datlinger P, Assenov Y, et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34:726–40.
    Tammen SA, Dolnikowski GG, Ausman LM, Liu Z, Sauer J, Friso S, et al. Aging and alcohol interact to Alter hepatic DNA Hydroxymethylation. Alcohol Clin Exp Res. 2014;38:2178–85.
    Jin Z, Liu Y. DNA methylation in human diseases. Gene Dis. 2018;5:1–8.
    Godshalk R, Nair J, van Schooten FJ, Risch A, Drings P, Kayser K, et al. Comparison of multiple DNA adduct types in tumor adjacent human lung tissue: effect of cigarette smoking. Carcinogenesis. 2002;23:2081–6.
    Dechakhamphu S, Pinlaor S, Sitthithaworn P, Nair J, Bartsch H, Yongvanit P. Lipid peroxidation and etheno DNA adducts in white blood cells of liver fluke-infected patients: protection by plasma alpha-tocopherol and praziquantel. Cancer Epidemiol Biomark Prev. 2010;19:310–8.
    Arab K, Pedersen M, Nair J, Meerang M, Knudsen LE, Bartsch H. Typical signature of DNA damage in white blood cells: a pilot study on etheno adducts in Danish mother-newborn child pairs. Carcinogenesis. 2009;30:282–5.
    Nair J, Vaca CE, Velic I, Mutanen M, Valsta LM, Bartsch H. High dietary omega-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA base adducts in white blood cells of female subjects. Cancer Epidemiol Biomark Prev. 1997;6:597–601.
    Churchwell MI, Beland FA, Doerge DR. Quantification of multiple DNA adducts formed through oxidative stress using liquid chromatography and electrospray tandem mass spectrometry. Chem Res Toxicol. 2002;15:1295–301.