Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress (2018)

  • Authors:
  • USP affiliated authors: UGRINOWITSCH, CARLOS - EEFE ; TRICOLI, VALMOR ALBERTO AUGUSTO - EEFE ; SILVA, HAMILTON AUGUSTO ROSCHEL DA - EEFE
  • USP Schools: EEFE; EEFE; EEFE
  • DOI: 10.1007/s00421-018-3984-y
  • Subjects: LESÕES NO ESPORTE; METABOLISMO DE PROTEÍNA; EXPRESSÃO GÊNICA; TREINAMENTO DE FORÇA; PROTEÍNAS; MÚSCULO ESQUELÉTICO; MÚSCULOS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00421-018-3984-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DAMAS, Felipe; UGRINOWITSCH, Carlos; LIBARDI, Cleiton Augusto; et al. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress. European journal of applied physiology, Berlin, p. 10 , 2018. Disponível em: < https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00421-018-3984-y > DOI: 10.1007/s00421-018-3984-y.
    • APA

      Damas, F., Ugrinowitsch, C., Libardi, C. A., Jannig, P. R., Hector, A. J., McGlory, C., et al. (2018). Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress. European journal of applied physiology, 10 . doi:10.1007/s00421-018-3984-y
    • NLM

      Damas F, Ugrinowitsch C, Libardi CA, Jannig PR, Hector AJ, McGlory C, Lixandrão ME, Vechin FC, Montenegro H, Tricoli V, Roschel H, Phillips SM. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress [Internet]. European journal of applied physiology. 2018 ;10 .Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00421-018-3984-y
    • Vancouver

      Damas F, Ugrinowitsch C, Libardi CA, Jannig PR, Hector AJ, McGlory C, Lixandrão ME, Vechin FC, Montenegro H, Tricoli V, Roschel H, Phillips SM. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress [Internet]. European journal of applied physiology. 2018 ;10 .Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00421-018-3984-y

    Referências citadas na obra
    Adams GR, Hather BM, Baldwin KM, Dudley GA (1993) Skeletal muscle myosin heavy chain composition and resistance training. J Appl Physiol 74:911–915. https://doi.org/10.1152/jappl.1993.74.2.911
    Ahtiainen JP et al (2016) Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age 38:10. https://doi.org/10.1007/s11357-015-9870-1
    Bellamy LM et al (2014) The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One 9:e109739. https://doi.org/10.1371/journal.pone.0109739
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300
    Bodine SC (2006) mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc 38:1950–1957. https://doi.org/10.1249/01.mss.0000233797.24035.35
    Chaillou T, Kirby TJ, McCarthy JJ (2014) Ribosome biogenesis: emerging evidence for a central role in the regulation of skeletal muscle mass. J Cell Physiol 229:1584–1594. https://doi.org/10.1002/jcp.24604
    Chen TC (2006) Variability in muscle damage after eccentric exercise and the repeated bout effect Res. Q Exerc Sport 77:362–371. https://doi.org/10.1080/02701367.2006.10599370
    Chen TC, Chen HL, Lin MJ, Wu CJ, Nosaka K (2009) Muscle damage responses of the elbow flexors to four maximal eccentric exercise bouts performed every 4 weeks. Eur J Appl Physiol 106:267–275. https://doi.org/10.1007/s00421-009-1016-7
    Churchward-Venne TA, Tieland M, Verdijk LB, Leenders M, Dirks ML, de Groot LC, van Loon LJ (2015) There are no nonresponders to resistance-type exercise training in older men and women. J Am Med Dir Assoc 16:400–411. https://doi.org/10.1016/j.jamda.2015.01.071
    Damas F, Phillips S, Vechin FC, Ugrinowitsch C (2015) A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 45:801–807. https://doi.org/10.1007/s40279-015-0320-0
    Damas F, Nosaka K, Libardi CA, Chen TC, Ugrinowitsch C (2016a) Susceptibility to exercise-induced muscle damage: a cluster analysis with a large sample. Int J Sports Med 37:633–640. https://doi.org/10.1055/s-0042-100281
    Damas F et al (2016b) Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol 594:5209–5222. https://doi.org/10.1113/JP272472
    Damas F, Libardi CA, Ugrinowitsch C (2018a) The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol 118:485–500. https://doi.org/10.1007/s00421-017-3792-9
    Damas F et al (2018b) Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men. PLoS One 13:e0191039. https://doi.org/10.1371/journal.pone.0191039
    Dickinson JM et al (2018) Transcriptome response of human skeletal muscle to divergent exercise stimuli. J Appl Physiol 124:1529–1540. https://doi.org/10.1152/japplphysiol.00014.2018
    Drummond MJ et al (2009) Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. J Appl Physiol 106:1403–1411. https://doi.org/10.1152/japplphysiol.90842.2008
    Figueiredo VC, Caldow MK, Massie V, Markworth JF, Cameron-Smith D, Blazevich AJ (2015) Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 309:E72–E83. https://doi.org/10.1152/ajpendo.00050.2015
    Gordon PM et al (2012) Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. J Appl Physiol 112:443–453. https://doi.org/10.1152/japplphysiol.00860.2011
    Grounds MD, Sorokin L, White J (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15:381–391. https://doi.org/10.1111/j.1600-0838.2005.00467.x
    Gulbin JP, Gaffney PT (2002) Identical twins are discordant for markers of eccentric exercise-induced muscle damage. Int J Sports Med 23:471–476. https://doi.org/10.1055/s-2002-35076
    Huber W et al (2015) Orchestrating high-throughput genomic analysis with. Bioconductor Nat Methods 12:115–121. https://doi.org/10.1038/nmeth.3252
    Hyldahl RD et al (2015) Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J 29:2894–2904. https://doi.org/10.1096/fj.14-266668
    Lamas L, Aoki MS, Ugrinowitsch C, Campos GE, Regazzini M, Moriscot AS, Tricoli V (2010) Expression of genes related to muscle plasticity after strength and power training regimens. Scand J Med Sci Sports 20:216–225. https://doi.org/10.1111/j.1600-0838.2009.00905.x
    Leal ML, Lamas L, Aoki MS, Ugrinowitsch C, Ramos MS, Tricoli V, Moriscot AS (2011) Effect of different resistance-training regimens on the WNT-signaling pathway. Eur J Appl Physiol 111:2535–2545. https://doi.org/10.1007/s00421-011-1874-7
    Liu D et al (2010) Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC Genom 11:659. https://doi.org/10.1186/1471-2164-11-659
    Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinform 10:161. https://doi.org/10.1186/1471-2105-10-161
    Mackey AL et al (2011) Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J 25:1943–1959. https://doi.org/10.1096/fj.10-176487
    Mahoney DJ et al (2008) Gene expression profiling in human skeletal muscle during recovery from eccentric exercise. Am J Physiol Regul Integr Comp Physiol 294:R1901–R1910. https://doi.org/10.1152/ajpregu.00847.2007
    Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM (2009) Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107:1655–1662. https://doi.org/10.1152/japplphysiol.91234.2008
    Mitchell CJ et al (2014) Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One 9:e89431. https://doi.org/10.1371/journal.pone.0089431
    Mobley CB et al (2018) Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training. PLoS One 13:e0195203. https://doi.org/10.1371/journal.pone.0195203
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27:29–34
    Paulsen G, Crameri R, Benestad HB, Fjeld JG, Morkrid L, Hallen J, Raastad T (2010) Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc 42:75–85. https://doi.org/10.1249/MSS.0b013e3181ac7adb
    Peake J, Nosaka K, Suzuki K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85
    Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276:E118–E124
    Phillips BE et al (2013) Molecular networks of human muscle adaptation to exercise and age. PLoS Genet 9:e1003389. https://doi.org/10.1371/journal.pgen.1003389
    Raue U, Trappe TA, Estrem ST, Qian HR, Helvering LM, Smith RC, Trappe S (2012) Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol 112:1625–1636. https://doi.org/10.1152/japplphysiol.00435.2011
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007
    Roth SM, Ferrell RE, Peters DG, Metter EJ, Hurley BF, Rogers MA (2002) Influence of age, sex, and strength training on human muscle gene expression determined by microarray. Physiol Genom 10:181–190. https://doi.org/10.1152/physiolgenomics.00028.2002
    Salanova M et al (2015) Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest. Sci Rep 5:17027. https://doi.org/10.1038/srep17027
    Shi W et al (2010a) Estimating the proportion of microarray probes expressed in an RNA sample. Nucleic Acids Res 38:2168–2176. https://doi.org/10.1093/nar/gkp1204
    Shi W, Oshlack A, Smyth GK (2010b) Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res 38:e204. https://doi.org/10.1093/nar/gkq871
    Smith ML, Baggerly KA, Bengtsson H, Ritchie ME, Hansen KD (2013) illuminaio: an open source IDAT parsing tool for Illumina microarrays F1000Res 2:264 https://doi.org/10.12688/f1000research.2-264.v1
    Stec MJ, Mayhew DL, Bamman MM (2015) The effects of age and resistance loading on skeletal muscle ribosome biogenesis. J Appl Physiol 119:851–857. https://doi.org/10.1152/japplphysiol.00489.2015
    Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. FASEB J 20:580–582. https://doi.org/10.1096/fj.05-5125fje
    Tang JE, Perco JG, Moore DR, Wilkinson SB, Phillips SM (2008) Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol 294:R172–R178. https://doi.org/10.1152/ajpregu.00636.2007
    Thalacker-Mercer AE, Dell’Italia LJ, Cui X, Cross JM, Bamman MM (2010) Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading. Physiol Genomics 40:141–149. https://doi.org/10.1152/physiolgenomics.00151.2009
    Thalacker-Mercer A, Stec M, Cui X, Cross J, Windham S, Bamman M (2013) Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. Physiol Genomics 45:499–507. https://doi.org/10.1152/physiolgenomics.00167.2012
    Thompson HS, Maynard EB, Morales ER, Scordilis SP (2003) Exercise-induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol Scand 178:61–72. https://doi.org/10.1046/j.1365-201X.2003.01112.x
    Welle S, Tawil R, Thornton CA (2008) Sex-related differences in gene expression in human skeletal muscle. PLoS One 3:e1385. https://doi.org/10.1371/journal.pone.0001385
    Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717. https://doi.org/10.1113/jphysiol.2008.153916
    Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD (2014) Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise Am. J Clin Nutr 99:86–95. https://doi.org/10.3945/ajcn.112.055517
    Wu D, Smyth GK (2012) Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res 40:e133. https://doi.org/10.1093/nar/gks461
    Zierath JR, Wallberg-Henriksson H (2015) Looking ahead perspective: where will the future of exercise biology take us? Cell Metab 22:25–30. https://doi.org/10.1016/j.cmet.2015.06.015