Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A Subsumption Architecture to Develop Dynamic Cognitive Network-Based Models With Autonomous Navigation Application (2013)

  • Authors:
  • USP affiliated authors: ANGELICO, BRUNO AUGUSTO - EP
  • USP Schools: EP
  • DOI: 10.1007/s40313-013-0008-3
  • Subjects: COGNIÇÃO; FUZZY (INTELIGÊNCIA ARTIFICIAL)
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s40313-013-0008-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MENDONÇA, Marcio T; ARRUDA, Lucia Valeria; NEVES JUNIOR, Flávio; ANGÉLICO, Bruno Augusto. A Subsumption Architecture to Develop Dynamic Cognitive Network-Based Models With Autonomous Navigation Application. Journal of Control, Automation and Electrical Systems[S.l.], Springer, v. 24, n. 1-2, p. 117-128, 2013. Disponível em: < https://doi.org/10.1007/s40313-013-0008-3 > DOI: 10.1007/s40313-013-0008-3.
    • APA

      Mendonça, M. T., Arruda, L. V., Neves Junior, F., & Angélico, B. A. (2013). A Subsumption Architecture to Develop Dynamic Cognitive Network-Based Models With Autonomous Navigation Application. Journal of Control, Automation and Electrical Systems, 24( 1-2), 117-128. doi:10.1007/s40313-013-0008-3
    • NLM

      Mendonça MT, Arruda LV, Neves Junior F, Angélico BA. A Subsumption Architecture to Develop Dynamic Cognitive Network-Based Models With Autonomous Navigation Application [Internet]. Journal of Control, Automation and Electrical Systems. 2013 ; 24( 1-2): 117-128.Available from: https://doi.org/10.1007/s40313-013-0008-3
    • Vancouver

      Mendonça MT, Arruda LV, Neves Junior F, Angélico BA. A Subsumption Architecture to Develop Dynamic Cognitive Network-Based Models With Autonomous Navigation Application [Internet]. Journal of Control, Automation and Electrical Systems. 2013 ; 24( 1-2): 117-128.Available from: https://doi.org/10.1007/s40313-013-0008-3

    Referências citadas na obra
    Andreou, A. S., Mateou, N. H., & Zombanakis, G. A. (2005). Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Computing, 9, 194–210.
    Axelrod, R. M. (1976). Structure of decision: The cognitive maps of political elites. Princeton: Princeton University Press.
    Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. Cambridge: MIT Press.
    Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2, 10.
    Carvalho, J., Tome, J. (2001). Rule based fuzzy cognitive maps-qualitative systems dynamics. 10th IEEE International Conference Fuzzy Systems, IEEE Press, pp. 280–283.
    Dickerson, J. A., & Kosko, B. (1994). Virtual Worlds as Fuzzy Cognitive Maps. Presence, 3(2), 73–89.
    Diniz, M. E., & Lins, M. P. (2012). Percepção e estruturação de problemas sociais utilizando mapas cognitivos. Produção, 22(1), 142–154.
    Driankov, D., & Saffiotti, A. (2001). Fuzzy logic techniques for autonomous vehicle navigation. Heidelberg: Physica.
    Glykas, M. (2010). Fuzzy cognitive maps: Advances in theory, methodologies, tools and applications (1st edn.). Springer Publishing Company, Incorporated.
    Goerick, C. (2011). Towards an understanding of hierarchical architectures. IEEE Transactions on Autonomous Mental Development, 3(1), 54–63.
    Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24, 65–75.
    Kottas, T. L., Boutalis, Y. S., & Christodoulou, M. A. (2007). Fuzzy cognitive network: A general framework. Intelligent Decision Technologies, 1(4), 183–196.
    Koulouriotis, D. E., Diakoulakis, I. E., Emiris, D. M., & Zopounidis, C. D. (2005). Development of dynamic cognitive networks as complex systems approximators: Validation in financial time series. Applied Soft Computing, 5(2), 157–179.
    Mendonça, M., Angelico, B. A., Arruda, L. V. R., Neves-Jr., F. (2011). Arquitetura de subsunção baseada em redes cognitivas dinâmicas com aplicação em navegação robotica. Anais do X Simpósio Brasileiro de Automação Inteligente (CD-ROM) pp. 1–6.
    Mendonça, M., Arruda, L., & Neves-Jr, F. (2011). Redes dinâmicas cognitivas aplicadas no controle supervisório de um fermentador. Sba Controle Et Automação, 22(4), 345–362.
    Mendonça, M., Arruda, L., & Neves-Jr, F. (2012). Autonomous navigation system using event driven-fuzzy cognitive maps. Applied Intelligence, 37(2), 175–188.
    Miao, Y., Liu, Z., Siew, C., & Miao, C. (2001). Dynamical cognitive network - an extension of fuzzy cognitive. IEEE Transactions on Fuzzy Systems, 9(5), 760–770.
    Miao, Y., Miao, C., Tao, X., Shen, Z., & Liu, Z. (2010). Transformation of cognitive maps. IEEE Transactions on Fuzzy Systems, 18(1), 114–124.
    Monteiro, S. T., & Ribeiro, C. H. (2004). Desempenho de algoritmos de aprendizagem por reforço sob condições de ambiguidade sensorial em robótica móvel. Sba Controle Et Automação, 15(3), 320–338.
    Neves-Jr., F., Arruda, L., Mendonça, M. , (2009). A combined fcm-ga approach to supervise industrial process. In T. Escobet, V. Puig, & B. Morcego (Eds.), 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (Vol. 1, pp. 1144–1149)., IFAC Spain: Barcelona.
    Papageorgiou, E. I. (2012). Learning algorithms for fuzzy cognitive maps: A review study. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(2), 150–163.
    Papageorgiou, E., Stylios, C., & Groumpos, P. (2003). An integrated two-level hierarchical system for decision making in radiation therapy based on fuzzy cognitive maps. IEEE Transactions on Biomedical Engineering, 50(12), 1326–1339.
    Pedrycz, W. (2010). The design of cognitive maps: A study in synergy of granular computing and evolutionary optimization. Expert Systems with Applications, 37, 7288–7294.
    Rieg, D. L., & de Araujo, Filho T. (2003). Mapas cognitivos como ferramenta de estruturação e resolução de problemas: o caso da pró-reitoria de extensão da ufscar. Gestão e Produção, 10(2), 145–162.
    Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (adaptive computation and machine learning). Cambridge: The MIT Press.
    Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10, 115–152.