Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Snake venom extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity (2018)

  • Authors:
  • USP affiliated authors: BYDLOWSKI, SERGIO PAULO - FM ; PALMISANO, GIUSEPPE - ICB
  • USP Schools: FM; ICB
  • DOI: 10.1038/s41598-018-30578-4
  • Subjects: PARASITOLOGIA; COBRAS; VENENOS DE ORIGEM ANIMAL; SERPENTES
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-30578-4 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-018-30578-4 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Evidência: oa journal (via doaj)
      • Licença: cc-by
      • Versão: publishedVersion
      • Tipo de hospedagem: publisher


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher



    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CARREGARI, Victor Corassolla; ROSA-FERNANDES, Livia; BALDASSO, Paulo; et al. Snake venom extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity. Scientific Reports, London, Nature Publishing Group, v. 8, p. 1-16, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-30578-4 > DOI: 10.1038/s41598-018-30578-4.
    • APA

      Carregari, V. C., Rosa-Fernandes, L., Baldasso, P., Bydlowski, S. P., Marangoni, S., Larsen, M. R., & Palmisano, G. (2018). Snake venom extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity. Scientific Reports, 8, 1-16. doi:10.1038/s41598-018-30578-4
    • NLM

      Carregari VC, Rosa-Fernandes L, Baldasso P, Bydlowski SP, Marangoni S, Larsen MR, Palmisano G. Snake venom extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity [Internet]. Scientific Reports. 2018 ; 8 1-16.Available from: http://dx.doi.org/10.1038/s41598-018-30578-4
    • Vancouver

      Carregari VC, Rosa-Fernandes L, Baldasso P, Bydlowski SP, Marangoni S, Larsen MR, Palmisano G. Snake venom extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity [Internet]. Scientific Reports. 2018 ; 8 1-16.Available from: http://dx.doi.org/10.1038/s41598-018-30578-4

    Referências citadas na obra
    McDiarmid, R. W., Campbell, J. A. & Toure, T. Snake species of the world: A taxonomic and geographic reference. Book 1, 511 (1999).
    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC evolutionary biology 13, 93, https://doi.org/10.1186/1471-2148-13-93 (2013).
    Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS medicine 5, e218, https://doi.org/10.1371/journal.pmed.0050218 (2008).
    Matsui, T., Fujimura, Y. & Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochimica et biophysica acta 1477, 146–156 (2000).
    Ogawa, Y., Kanai-Azuma, M., Akimoto, Y., Kawakami, H. & Yanoshita, R. Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom. Toxicon: official journal of the International Society on Toxinology 51, 984–993, https://doi.org/10.1016/j.toxicon.2008.02.003 (2008).
    Ogawa, Y., Mamura, Y., Murayama, N. & Yanoshita, R. Characterization and cDNA cloning of dipeptidyl peptidase IV from the venom of Gloydius blomhoffi brevicaudus. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 145, 35–42, https://doi.org/10.1016/j.cbpb.2006.05.013 (2006).
    Ogawa, Y., Murayama, N., Fujita, Y. & Yanoshita, R. Characterization and cDNA cloning of aminopeptidase A from the venom of Gloydius blomhoffi brevicaudus. Toxicon: official journal of the International Society on Toxinology 49, 1172–1181, https://doi.org/10.1016/j.toxicon.2007.02.012 (2007).
    Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. The Journal of cell biology 101, 942–948 (1985).
    Baranyai, T. et al. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PloS one 10, e0145686, https://doi.org/10.1371/journal.pone.0145686 (2015).
    Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature reviews. Immunology 2, 569–579, https://doi.org/10.1038/nri855 (2002).
    Keller, S., Sanderson, M. P., Stoeck, A. & Altevogt, P. Exosomes: from biogenesis and secretion to biological function. Immunology letters 107, 102–108, https://doi.org/10.1016/j.imlet.2006.09.005 (2006).
    Johnstone, R. M. Exosomes biological significance: A concise review. Blood cells, molecules & diseases 36, 315–321, https://doi.org/10.1016/j.bcmd.2005.12.001 (2006).
    Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles 4, 27066, https://doi.org/10.3402/jev.v4.27066 (2015).
    Palmisano, G. et al. Characterization of membrane-shed microvesicles from cytokine-stimulated beta-cells using proteomics strategies. Molecular & cellular proteomics: MCP 11, 230–243, https://doi.org/10.1074/mcp.M111.012732 (2012).
    Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94, 3791–3799 (1999).
    Peters, P. J. et al. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. European journal of immunology 19, 1469–1475, https://doi.org/10.1002/eji.1830190819 (1989).
    Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine 18, 883–891, https://doi.org/10.1038/nm.2753 (2012).
    Kang, D., Oh, S., Ahn, S. M., Lee, B. H. & Moon, M. H. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Journal of proteome research 7, 3475–3480, https://doi.org/10.1021/pr800225z (2008).
    Ciregia, F., Urbani, A. & Palmisano, G. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Frontiers in molecular neuroscience 10, 276, https://doi.org/10.3389/fnmol.2017.00276 (2017).
    Ibrahim, A. & Marban, E. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology. Annual review of physiology 78, 67–83, https://doi.org/10.1146/annurev-physiol-021115-104929 (2016).
    Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. The Journal of experimental medicine 183, 1161–1172 (1996).
    Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annual review of cell and developmental biology 21, 319–346, https://doi.org/10.1146/annurev.cellbio.21.012704.131001 (2005).
    Wolf, P. The nature and significance of platelet products in human plasma. British journal of haematology 13, 269–288 (1967).
    Lasser, C., Eldh, M. & Lotvall, J. Isolation and characterization of RNA-containing exosomes. Journal of visualized experiments: JoVE, e3037, https://doi.org/10.3791/3037 (2012).
    Pisitkun, T., Shen, R. F. & Knepper, M. A. Identification and proteomic profiling of exosomes in human urine. Proceedings of the National Academy of Sciences of the United States of America 101, 13368–13373, https://doi.org/10.1073/pnas.0403453101 (2004).
    Keller, S., Ridinger, J., Rupp, A. K., Janssen, J. W. & Altevogt, P. Body fluid derived exosomes as a novel template for clinical diagnostics. Journal of translational medicine 9, 86, https://doi.org/10.1186/1479-5876-9-86 (2011).
    Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G. & Bonnerot, C. Exosomal-like vesicles are present in human blood plasma. International immunology 17, 879–887, https://doi.org/10.1093/intimm/dxh267 (2005).
    Poliakov, A., Spilman, M., Dokland, T., Amling, C. L. & Mobley, J. A. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate 69, 159–167, https://doi.org/10.1002/pros.20860 (2009).
    Lasser, C. et al. RNA-containing exosomes in human nasal secretions. American journal of rhinology & allergy 25, 89–93, https://doi.org/10.2500/ajra.2011.25.3573 (2011).
    Rosa-Fernandes, L., Rocha, V. B., Carregari, V. C., Urbani, A. & Palmisano, G. A Perspective on Extracellular VesiclesProteomics. Frontiers in chemistry 5, 102, https://doi.org/10.3389/fchem.2017.00102 (2017).
    Warshawsky, H., Haddad, A., Goncalves, R. P., Valeri, V. & De Lucca, F. L. Fine structure of the venom gland epithelium of the South American rattlesnake and radioautographic studies of protein formation by the secretory cells. The American journal of anatomy 138, 79–119, https://doi.org/10.1002/aja.1001380106 (1973).
    Mackessy, S. P. Morphology and ultrastructure of the venom glands of the northern pacific rattlesnake Crotalus viridis oreganus. Journal of Morphology 208, 109–128, https://doi.org/10.1002/jmor.1052080106 (1991).
    Carneiro, S. M., Fernandes, W., Sant’Anna, S. S. & Yamanouye, N. Microvesicles in the venom of Crotalus durissus terrificus (Serpentes, Viperidae). Toxicon: official journal of the International Society on Toxinology 49, 106–110, https://doi.org/10.1016/j.toxicon.2006.04.020 (2007).
    Momen-Heravi, F. et al. Current methods for the isolation of extracellular vesicles. Biological chemistry 394, 1253–1262, https://doi.org/10.1515/hsz-2013-0141 (2013).
    Bosch, S. et al. Trehalose prevents aggregation of exosomes and cryodamage. Scientific reports 6, 36162, https://doi.org/10.1038/srep36162 (2016).
    Kim, S. H. et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 174, 6440–6448 (2005).
    Mackessy, S. P. Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers. Toxicon: official journal of the International Society on Toxinology 55, 1463–1474, https://doi.org/10.1016/j.toxicon.2010.02.028 (2010).
    Tu, A. T. Overview of snake venom chemistry. Advances in experimental medicine and biology 391, 37–62 (1996).
    Calvete, J. J. et al. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. Journal of proteome research 9, 528–544, https://doi.org/10.1021/pr9008749 (2010).
    Lomonte, B. et al. Venomics of New World pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon. Journal of proteomics 96, 103–116, https://doi.org/10.1016/j.jprot.2013.10.036 (2014).
    Calvete, J. J., Juarez, P. & Sanz, L. Snake venomics. Strategy and applications. Journal of mass spectrometry: JMS 42, 1405–1414, https://doi.org/10.1002/jms.1242 (2007).
    Calvete, J. J., Fasoli, E., Sanz, L., Boschetti, E. & Righetti, P. G. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Journal of proteome research 8, 3055–3067, https://doi.org/10.1021/pr900249q (2009).
    Fry, B. G. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome research 15, 403–420, https://doi.org/10.1101/gr.3228405 (2005).
    Hargreaves, A. D., Swain, M. T., Logan, D. W. & Mulley, J. F. Testing the Toxicofera: comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon: official journal of the International Society on Toxinology 92, 140–156, https://doi.org/10.1016/j.toxicon.2014.10.004 (2014).
    Reyes-Velasco, J. et al. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Molecular biology and evolution 32, 173–183, https://doi.org/10.1093/molbev/msu294 (2015).
    Alape-Giron, A. et al. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. Journal of proteome research 7, 3556–3571, https://doi.org/10.1021/pr800332p (2008).
    Nunez, V. et al. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Peru and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. Journal of proteomics 73, 57–78, https://doi.org/10.1016/j.jprot.2009.07.013 (2009).
    Mackessy, S. P. Fibrinogenolytic proteases from the venoms of juvenile and adult northern Pacific rattlesnakes (Crotalus viridis oreganus). Comparative biochemistry and physiology. B, Comparative biochemistry 106, 181–189 (1993).
    Barlow, A., Pook, C. E., Harrison, R. A. & Wuster, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proceedings. Biological sciences/The Royal Society 276, 2443–2449, https://doi.org/10.1098/rspb.2009.0048 (2009).
    Frese, C. K. et al. Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Analytical chemistry 84, 9668–9673, https://doi.org/10.1021/ac3025366 (2012).
    Sanz, L., Gibbs, H. L., Mackessy, S. P. & Calvete, J. J. Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. Journal of proteome research 5, 2098–2112, https://doi.org/10.1021/pr0602500 (2006).
    Iwanaga, S., Takahashi, H. & Suzuki, T. Proteinase inhibitors from the venom of Russell’s viper. Methods in enzymology 45, 874–881 (1976).
    Fox, J. W. & Serrano, S. M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon: official journal of the International Society on Toxinology 45, 969–985, https://doi.org/10.1016/j.toxicon.2005.02.012 (2005).
    Serrano, S. M. & Maroun, R. C. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon: official journal of the International Society on Toxinology 45, 1115–1132, https://doi.org/10.1016/j.toxicon.2005.02.020 (2005).
    Harris, J. B. & Cullen, M. J. Muscle necrosis caused by snake venoms and toxins. Electron microscopy reviews 3, 183–211 (1990).
    Saviola, A. J. et al. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab(R). Journal of proteomics 121, 28–43, https://doi.org/10.1016/j.jprot.2015.03.015 (2015).
    Mackessy, S. P., Sixberry, N. M., Heyborne, W. H. & Fritts, T. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon: official journal of the International Society on Toxinology 47, 537–548, https://doi.org/10.1016/j.toxicon.2006.01.007 (2006).
    Lomonte, B. et al. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. Journal of proteomics 105, 323–339, https://doi.org/10.1016/j.jprot.2014.02.020 (2014).
    Junqueira-de-Azevedo, I. L. et al. Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 173, 877–889, https://doi.org/10.1534/genetics.106.056515 (2006).
    Schmaier, A. H. The plasma kallikrein-kinin system counterbalances the renin-angiotensin system. The Journal of clinical investigation 109, 1007–1009, https://doi.org/10.1172/JCI15490 (2002).
    Camargo, A. C., Ianzer, D., Guerreiro, J. R. & Serrano, S. M. Bradykinin-potentiating peptides: beyond captopril. Toxicon: official journal of the International Society on Toxinology 59, 516–523, https://doi.org/10.1016/j.toxicon.2011.07.013 (2012).
    Moreau, M. E. et al. Expression of metallopeptidases and kinin receptors in swine oropharyngeal tissues: effects of angiotensin I-converting enzyme inhibition and inflammation. The Journal of pharmacology and experimental therapeutics 315, 1065–1074, https://doi.org/10.1124/jpet.105.088005 (2005).
    Sciani, J. M. et al. An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. Journal of Peptide Science 23, 68–76, https://doi.org/10.1002/psc.2965 (2017).
    Munawar, A. et al. Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Proteome science 14, 1, https://doi.org/10.1186/s12953-016-0090-0 (2016).
    Ouyang, C., Teng, C. M. & Huang, T. F. Characterization of snake venom principles affecting blood coagulation and platelet aggregation. Advances in experimental medicine and biology 281, 151–163 (1990).
    Grillo Rodriguez, O., Scannone, H. R. & Parra, N. D. Enzymatic activities and other characteristics of Crotalus durissus cumanensis venom. Toxicon: official journal of the International Society on Toxinology 12, 297–302 (1974).
    da Silva, I. R. et al. BJ-PI2, a non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochimica et biophysica acta 1820, 1809–1821, https://doi.org/10.1016/j.bbagen.2012.07.011 (2012).
    Markland, F. S. Snake venoms and the hemostatic system. Toxicon: official journal of the International Society on Toxinology 36, 1749–1800 (1998).
    Pirkle, H. & Stocker, K. Thrombin-like enzymes from snake venoms: an inventory. For the Subcommittee on Nomenclature of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thrombosis and haemostasis 65, 444–450 (1991).
    Gong, W., Zhu, X., Liu, S., Teng, M. & Niu, L. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. Journal of molecular biology 283, 657–668, https://doi.org/10.1006/jmbi.1998.2110 (1998).
    Rodrigues, V. M. et al. Structural and functional characterization of neuwiedase, a nonhemorrhagic fibrin(ogen)olytic metalloprotease from Bothrops neuwiedi snake venom. Archives of biochemistry and biophysics 381, 213–224, https://doi.org/10.1006/abbi.2000.1958 (2000).
    Gutierrez, J. M. & Rucavado, A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82, 841–850 (2000).
    Baramova, E. N., Shannon, J. D., Bjarnason, J. B. & Fox, J. W. Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases. Archives of biochemistry and biophysics 275, 63–71 (1989).
    Osaka, A., Just, M. & Habermann, E. Action of snake venom hemorrhagic principles on isolated glomerular basement membrane. Biochimica et biophysica acta 323, 415–428 (1973).
    Paes Leme, A. F. et al. High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry. Journal of proteomics 74, 401–410, https://doi.org/10.1016/j.jprot.2010.12.002 (2011).
    Escalante, T. et al. Role of collagens and perlecan in microvascular stability: exploring the mechanism of capillary vessel damage by snake venom metalloproteinases. PloS one 6, e28017, https://doi.org/10.1371/journal.pone.0028017 (2011).
    Kuhn, K. Basement membrane (type IV) collagen. Matrix biology: journal of the International Society for Matrix Biology 14, 439–445 (1995).
    Yurchenco, P. D., Amenta, P. S. & Patton, B. L. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol 22, 521–538, https://doi.org/10.1016/j.matbio.2003.10.006 (2004).
    Fox, J. W. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon: official journal of the International Society on Toxinology 62, 75–82, https://doi.org/10.1016/j.toxicon.2012.09.009 (2013).
    Stocker, W. & Bode, W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Current opinion in structural biology 5, 383–390 (1995).
    Bode, W., Gomis-Ruth, F. X. & Stockler, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS letters 331, 134–140 (1993).
    Moura-da-Silva, A. M. et al. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation. Toxins 8, https://doi.org/10.3390/toxins8060183 (2016).
    Luna, M. S., Valente, R. H., Perales, J., Vieira, M. L. & Yamanouye, N. Activation of Bothrops jararaca snake venom gland and venom production: a proteomic approach. Journal of proteomics 94, 460–472, https://doi.org/10.1016/j.jprot.2013.10.026 (2013).
    Portes-Junior, J. A. et al. Unraveling the Processing and Activation of Snake Venom Metalloproteinases. Journal of proteome research 13, 3338–3348, https://doi.org/10.1021/pr500185a (2014).
    Braud, S., Bon, C. & Wisner, A. Snake venom proteins acting on hemostasis. Biochimie 82, 851–859 (2000).
    Markland, F. S. Jr. Snake venom fibrinogenolytic and fibrinolytic enzymes: an updated inventory. Registry of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thrombosis and haemostasis 79, 668–674 (1998).
    Bjarnason, J. B., Barish, A., Direnzo, G. S., Campbell, R. & Fox, J. W. Kallikrein-like enzymes from Crotalus atrox venom. The Journal of biological chemistry 258, 12566–12573 (1983).
    Tokunaga, F. et al. The factor V-activating enzyme (RVV-V) from Russell’s viper venom. Identification of isoproteins RVV-V alpha, -V beta, and -V gamma and their complete amino acid sequences. The Journal of biological chemistry 263, 17471–17481 (1988).
    Kisiel, W., Kondo, S., Smith, K. J., McMullen, B. A. & Smith, L. F. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom. The Journal of biological chemistry 262, 12607–12613 (1987).
    Zhang, Y., Wisner, A., Xiong, Y. & Bon, C. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. The Journal of biological chemistry 270, 10246–10255 (1995).
    Serrano, S. M., Mentele, R., Sampaio, C. A. & Fink, E. Purification, characterization, and amino acid sequence of a serine proteinase, PA-BJ, with platelet-aggregating activity from the venom of Bothrops jararaca. Biochemistry 34, 7186–7193 (1995).
    Erlanger, B. F., Kokowsky, N. & Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Archives of biochemistry and biophysics 95, 271–278 (1961).
    Charney, J. & Tomarelli, R. M. A colorimetric method for the determination of the proteolytic activity of duodenal juice. The Journal of biological chemistry 171, 501–505 (1947).
    Stroka, A., Donato, J. L., Bon, C., Hyslop, S. & de Araujo, A. L. Purification and characterization of a hemorrhagic metalloproteinase from Bothrops lanceolatus (Fer-de-lance) snake venom. Toxicon: official journal of the International Society on Toxinology 45, 411–420, https://doi.org/10.1016/j.toxicon.2004.11.010 (2005).
    Torres-Huaco, F. D., Ponce-Soto, L. A., Martins-de-Souza, D. & Marangoni, S. Purification and characterization of a new weak hemorrhagic metalloproteinase BmHF-1 from Bothrops marajoensis snake venom. The protein journal 29, 407–416, https://doi.org/10.1007/s10930-010-9267-z (2010).
    Torres-Huaco, F. D. et al. Rapid purification and procoagulant and platelet aggregating activities of Rhombeobin: a thrombin-like/gyroxin-like enzyme from Lachesis muta rhombeata snake venom. BioMed research international 2013, 903292, https://doi.org/10.1155/2013/903292 (2013).
    Yamakawa, Y. & Omori-Satoh, T. A protease in the venom of king cobra (Ophiophagus hannah): purification, characterization and substrate specificity on oxidized insulin B-chain. Toxicon: official journal of the International Society on Toxinology 26, 1145–1155 (1988).
    Ramos, O. H. & Selistre-de-Araujo, H. S. Snake venom metalloproteases–structure and function of catalytic and disintegrin domains. Comparative biochemistry and physiology. Toxicology & pharmacology: CBP 142, 328–346, https://doi.org/10.1016/j.cbpc.2005.11.005 (2006).
    Mukherjee, A. K. The Pro-Coagulant Fibrinogenolytic Serine Protease Isoenzymes Purified from Daboia russelii russelii Venom Coagulate the Blood through Factor V Activation: Role of Glycosylation on Enzymatic Activity. PloS one 9, https://doi.org/10.1371/journal.pone.0086823 (2014).
    Amiconi, G. et al. A novel venombin B from agkistrodon contortrix contortrix: evidence for recognition properties in the surface around the primary specificity pocket different from thrombin. Biochemistry 39, 10294–10308 (2000).
    Moran, J. B. & Geren, C. R. Subspecific variations in Agkistrodon contortrix venoms. Comparative biochemistry and physiology. B, Comparative biochemistry 64, 201–205 (1979).
    Wang, W. J. & Huang, T. F. Purification and characterization of a novel metalloproteinase, acurhagin, from Agkistrodon acutus venom. Thrombosis and haemostasis 87, 641–650 (2002).
    Masuda, S., Maeda, H., Miao, J. Y., Hayashi, H. & Araki, S. cDNA cloning and some additional peptide characterization of a single-chain vascular apoptosis-inducing protein, VAP2. Endothelium 14, 89–96, https://doi.org/10.1080/10623320701346882 (2007).
    Souza-Imberg, A. et al. Origin and characterization of small membranous vesicles present in the venom of Crotalus durissus terrificus. Toxicon 36, 27–33, https://doi.org/10.1016/j.toxicon.2017.06.013 (2017).
    Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3, Unit 3 22, https://doi.org/10.1002/0471143030.cb0322s30 (2006).
    Palmisano, G. et al. Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat Protoc 5, 1974–1982, https://doi.org/10.1038/nprot.2010.167 (2010).
    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature biotechnology 26, 1367–1372, https://doi.org/10.1038/nbt.1511 (2008).
    Keller, A. & Shteynberg, D. Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline. Methods Mol Biol 694, 169–189, https://doi.org/10.1007/978-1-60761-977-2_12 (2011).
    Zhang, J. et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & cellular proteomics:. MCP 11(M111), 010587, https://doi.org/10.1074/mcp.M111.010587 (2012).
    Apweiler, R. et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32, D115–119, https://doi.org/10.1093/nar/gkh131 (2004).
    Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24, https://doi.org/10.1002/pmic.201200439 (2013).
    Viala, V. L. et al. Pseudechis guttatus venom proteome: Insights into evolution and toxin clustering. Journal of proteomics 110, 32–44, https://doi.org/10.1016/j.jprot.2014.07.030 (2014).
    Oliveros, J. C. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html (2007).
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
    Chowdhury, M. A., Miyoshi, S. & Shinoda, S. Purification and characterization of a protease produced by Vibrio mimicus. Infection and immunity 58, 4159–4162 (1990).
    Sunagar, K. et al. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. Journal of proteomics 99, 68–83, https://doi.org/10.1016/j.jprot.2014.01.013 (2014).
    Schwert, G. W. & Takenaka, Y. A spectrophotometric determination of trypsin and chymotrypsin. Biochimica et biophysica acta 16, 570–575 (1955).
    Porto, B. N. et al. Biochemical and biological characterization of the venoms of Bothriopsis bilineata and Bothriopsis taeniata (Serpentes: Viperidae). Toxicon 50, 270–277, https://doi.org/10.1016/j.toxicon.2007.03.020 (2007).
    Rodriguez, O. G., Scannone, H. R. & Parra, N. D. Enzymatic activities and other characteristics of Crotalus durissus cumanensis venom. Toxicon 12, 297–302, https://doi.org/10.1016/0041-0101(74)90073-7 (1974).