Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Detoxifcation mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus (2018)

  • Authors:
  • USP affiliated authors: TORRES, TATIANA TEIXEIRA - IB
  • USP Schools: IB
  • DOI: 10.1038/s41598-018-30907-7
  • Subjects: GENÉTICA DE POPULAÇÕES; ECTOPARASITOSES ANIMAL; CARRAPATOS; GADO; ANTIPARASITÁRIOS; TOXICOLOGIA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-30907-7 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GALL, Valeria Lis Le; KLAFE, Guilherme Marcondes; TORRES, Tatiana Teixeira. Detoxifcation mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. Scientific Reports, London, p. 1-10, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-30907-7 > DOI: 10.1038/s41598-018-30907-7.
    • APA

      Gall, V. L. L., Klafe, G. M., & Torres, T. T. (2018). Detoxifcation mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. Scientific Reports, 1-10. doi:10.1038/s41598-018-30907-7
    • NLM

      Gall VLL, Klafe GM, Torres TT. Detoxifcation mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus [Internet]. Scientific Reports. 2018 ; 1-10.Available from: http://dx.doi.org/10.1038/s41598-018-30907-7
    • Vancouver

      Gall VLL, Klafe GM, Torres TT. Detoxifcation mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus [Internet]. Scientific Reports. 2018 ; 1-10.Available from: http://dx.doi.org/10.1038/s41598-018-30907-7

    Referências citadas na obra
    Burger, T. D., Shao, R. & Barker, S. C. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol. Phylogenet. Evol. 76, 241–253 (2014).
    Grisi, L. et al. Reassessment of the potential economic impact of cattle parasites in Brazil. Rev. Bras. Parasitol. Vet. 23, 150–156 (2014).
    Montenegro-James, S. Prevalence and control of babesiosis in the Americas. Mem Inst Oswaldo Cruz. 87, 27–36 (1992).
    Reck, J. et al. Does Rhipicephalus microplus tick infestation increase the risk for myiasis caused by Cochliomyia hominivorax in cattle? Prev Vet Med. 113, 59–62 (2014).
    Martins, J. R. & Furlong, J. Avermectin resistance of the cattle tick Boophilus microplus in Brazil. Vet Rec. 149, 64 (2001).
    Klafke, G. M. et al. Larval Immersion Tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from State of São Paulo, Brazil. Vet. Parasitol. 142, 386–390 (2006).
    Klafke, G. M., Albuquerque, T. A., Miller, R. J. & Schumaker, T. T. Selection of an ivermectin-resistant strain of Rhipicephalus microplus (Acari: Ixodidae) in Brazil. Vet. Parasitol. 168, 97–104 (2010).
    Klafke, G. M., Castro-Janer, E., Mendes, M. C., Namindome, A. & Schumaker, T. T. S. Applicability of in vitro bioassays for the diagnosis of ivermectin resistance in Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 184, 212–220 (2012).
    Hemingway, J., Hawkes, N. J., Mc Carroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).
    Rosario-Cruz, R. et al. Genetic basis and impact of tick acaricide resistance. Front. Biosci. 14, 2657–2665 (2009).
    Pohl, P. C. et al. ABC transporter efflux pumps: A defense mechanism against ivermectin in Rhipicephalus (Boophilus) microplus. Int. J. Parasitol. 41, 1323–1333 (2011).
    Feyereisen, R., Dermauw, W. & Van Leeuwen, T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochemistry and Physiology 121, 61–77 (2015).
    Miller, R. J., Davey, R. B. & George, J. E. Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 36, 533–538 (1999).
    Passay, C. et al. The Effect of Insecticide Synergists on the Response of Scabies Mites to Pyrethroid Acaricides. PLoS Negl Trop Dis. 3, 354–362 (2009).
    Chevillon, C. et al. Accumulation of acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from New Caledonia Island. Vet. Parasitol. 147, 276–88 (2007).
    Li, A. Y., Davey, R. B., Miller, R. J. & George, J. E. Detection and characterization of amitraz resistance in the southern cattle tick, Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 41, 193–200 (2004).
    Pohl, P. C. et al. ABC transporters as a multidrug detoxification mechanism in Rhipicephalus (Boophilus) microplus. Parasitol. Res. 111, 2345–2351 (2012).
    Labbé, P., Alout, H., Djogbénou, L., Pasteur, N. & Weill, M. Evolution of Resistance to Insecticide in Disease Vectors. Genetics and Evolution of Infectious Disease. 363–409 (2011)
    Klafke, G. M. et al. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state. Southern Brazil. Ticks Tick Borne Dis. 8, 73–80 (2017).
    FAO - Food And Agriculture Organisation. Resistance management and integrated parasite control in ruminants: Guidelines. Roma: Food and Agriculture Organisation, Animal Production and Health Division. ftp://ftp.fao.org/docrep/fao/010/ag014e/ag014e00.pdf.
    LeOra Software. In: J.L. Robertson, H. K. Preisler & Russel, R. M.(Eds) Polo Plus Probit and Logit Analysis, User’s Guide. (Berkeley, 2003).
    Robertson, J. L., Russell, R. M., Preisler, H. K. & Savin, N. E. Bioassays with Arthropods, 2nd ed. (CRC Press, 2007).
    Dermauw, W. et al. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc Natl Acad Sci USA 110, E113–E122 (2012).
    Finney, D. J. Probit analysis. Cambridge: The University Press (1971).
    Wickham, H. ggplot2: elegant graphics for data analysis. (Springer New York, 2009).
    Kaplanoglu, E., Chapman, P., Scott, I. M. & Donly, C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Scientific Reports 7, 1762 (2017).
    Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: a success story. Genome Biol. 1, REVIEWS3003, https://doi.org/10.1186/gb-2000-1-6-reviews3003 (2001).
    Liu, N. & Yue, X. Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J Econ Entomol. 93(4), 1269–75 (2000).
    Kasai, S., Weerashinghe, I. S. & Shono, T. P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae. Arch. Insect Biochem. Physiol. 37, 47–56 (1998).
    Itokawa, K. et al. Genomic structures of Cyp9m10in pyrethroid resistant and susceptible strains of Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40, 631–40 (2010).
    Wondji, C. S. et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 19, 452–59 (2009).
    Riveron, J. M. et al. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc. Natl. Acad. Sci. USA 110, 252–57 (2013).
    Daborn, P. J. et al. A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science 297(5590), 2253–2256 (2002).
    Van Leeuwen, T., Vontas, T., Tsagkarakou, A., Dermauw, W. & Tirry, L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 40, 563–572 (2010).
    Sanchez-Arroyo, H., Koehler, P. G. & Valles, S. M. Effects of the Synergists Piperonyl Butoxide and S,S,S-Tributyl Phosphorotrithioate on Propoxur Pharmacokinetics in Blattella germanica (Blattodea: Blattellidae). Journal of Economic Entomology. 94(5), 1209–1216 (2001).
    Dehkordi, A. S. et al. Synergists action of piperonyl butoxide and S,S,S-tributyl phosphorotrithioate on toxicity of carbamate insecticides against Blattella germanica. Asian Pacific. Journal of Tropical Medicine. 10(10), 981–986 (2017).
    Abdallah, I. S., Abou-Yousef, H. M., Fouad, E. A. & El-Hady Kandil, M. A. The role of detoxifying enzymes in the resistance of the cowpea aphid (Aphis craccivora Koch) to thiamethoxam. Journal of Plant Protection Research. 56(1), 67–72 (2016).
    Dadzie, S. K. et al. Evaluation of piperonyl butoxide in enhancing the efficacy of pyrethroid insecticides against resistant Anopheles gambiae s.l. in Ghana. Malaria Journal 16, 342 (2017).
    Sanchez-Arroyo, H., Koehler, P. G. & Valles, S. M. Effects of the synergists piperonyl butoxide and S, S, S-tributyl phosphorotrithioate on propoxur pharmacokinetics in Blatella germanica (Blattodea: Blattelidae). J Econ Entomol 94(5), 1209–1216 (2001).
    Müller, P. et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids.PLoS Genet. 4(11), e1000286 (2008).
    Zhu, Y. C., Gordon, L. S. & Ming, S. C. Comparative study on glutathione S-transferase activity, cDNA, and gene expression between malathion susceptible and resistant strains of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry and Physiology 87(1), 62–72 (2007).
    Montella, I. R., Schama, R. & Valle, D. The classification of esterases: an important gene family involved in insecticide resistance–a review. Mem. Inst. Oswaldo Cruz. 107, 437–449 (2012).
    Campbell, P. M., Newcomb, R. D., Russell, R. J. & Oakeshott, J. G.Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochemistry and Molecular Biology 28(3), 139–150 (1998).
    Carvalho, R. A., Torres, T. T. & de Azeredo-Espin, A. M. A survey of mutations in the Cochliomyia hominivorax (Diptera: Calliphoridae) esterase E3 gene associated with organophosphate resistance and the molecular identification of mutant alleles. Vet Parasitol 140(3-4), 344–351 (2006).
    Carvalho, R. A., Torres, T. T., Paniago, M. G. & Azeredo-Espin, A. M. Molecular characterization of esterase E3 gene associated with organophosphorus insecticide resistance in the New World screwworm fly, Cochliomyia hominivorax. Med Vet Entomol. Suppl (1), 86–91(2009).
    Zhang, M. & Scott, J. G. Cytochrome b5 is essential for cyto- chrome P450 6D1-mediated cypermethrin resistance in LPR house flies. Pestic Biochem Physiol 55, 150–156 (1996).
    Higgins, C. F. ABC transporters: physiology, structure and mechanism–an overview. Res. Microbiol. 152, 205–210 (2001).
    Dano, K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. Acta. 323, 466–483 (1973).
    Kartner, N., Everndenporelle, D., Bradley, G. & Ling, V. Detection of P-glycoprotein in multidrug-resistant cell-lines by monoclonal-antibodies. Nature 316, 820–823 (1985).
    Buss, D. S., McCaffery, A. R. & Callaghan, A. Evidence for P-glycoprotein modification of insecticide toxicity in mosquitoes of the Culex pipiens complex. Med. Vet. Entomol. 16, 218–222 (2002).
    Silva, A. X., Jander, G., Samaniego, H., Ramsey, J. S. & Figueroa, C. C. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: a transcriptomic survey. PLoS ONE, 7, e36366 (2012).
    Luo, L., Sun, Y. J. & Wu, Y. J. Abamectin resistance in Drosophila is related to increased expression of P-glycoprotein via the dEGFR and dAkt pathways. Insect Biochem. Mol. Biol. 43, 627–634 (2013).
    Hawthorne, D. J. & Dively, G. P. Killing them with kindness? In-hive medications may inhibit xenobiotic efflux transporters and endanger honey bees. PLoS ONE, 6, e26796 (2011).
    Cafarchia, C. et al. Potential role of ATP-binding cassette transporters against acaricides in the brown dog tick Rhipicephalus sanguineus sensu lato. Med Vet Entomol. 29(1), 88–93 (2015).
    Podsiadlowski, L., Matha, V. & Vilcinskas, A. Detection of a P-glycoprotein related pump in Chironomus larvae and its inhibition by verapamil and cyclosporin A. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 121, 443e450 (1998).
    Couso-Ferrer, F. et al. Cross-resistance to insecticides in a malathion-resistant strain of Ceratitis capitata (Diptera: Tephritidae). J Econ Entomol. 104(4), 1349–56 (2011).
    Dermauw, W. & Van Leeuwen, T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochemistry and Molecular Biology 45, 89–110 (2014).