Ver registro no DEDALUS
Exportar registro bibliográfico



Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects (2017)

  • Authors:
  • USP Schools: FMRP; FMRP; FMRP
  • DOI: 10.1038/s41467-017-02126-7
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41467-017-02126-7 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALMEIDA, Fausto; WOLF, Julie M.; SILVA, Thiago Aparecido; et al. Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nature Communications, London, v. 8, n. 1, 2017. Disponível em: < > DOI: 10.1038/s41467-017-02126-7.
    • APA

      Almeida, F., Wolf, J. M., Silva, T. A., DeLeon-Rodriguez, C. M., Rezende, C. P., Pessoni, A. M., et al. (2017). Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nature Communications, 8( 1). doi:10.1038/s41467-017-02126-7
    • NLM

      Almeida F, Wolf JM, Silva TA, DeLeon-Rodriguez CM, Rezende CP, Pessoni AM, Fernandes FF, Silva-Rocha R, Martinez R, Casadevall A, Rodrigues ML, Roque-Barreira MC. Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects [Internet]. Nature Communications. 2017 ; 8( 1):Available from:
    • Vancouver

      Almeida F, Wolf JM, Silva TA, DeLeon-Rodriguez CM, Rezende CP, Pessoni AM, Fernandes FF, Silva-Rocha R, Martinez R, Casadevall A, Rodrigues ML, Roque-Barreira MC. Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects [Internet]. Nature Communications. 2017 ; 8( 1):Available from:

    Referências citadas na obra
    Heitman, J., Kozel, T. R., Kwon-Chung, J., Perfect, J. R. & Casadevall, A. Cryptococcus: From Human Pathogen to Model Yeast. (ASM Press: Washington, DC, 2011).
    Barnett, J. A. A history of research on yeasts 14: medical yeasts part 2, Cryptococcus neoformans. Yeast (Chichester, Engl.) 27, 875–904 (2010).
    Lin, X. & Heitman, J. The biology of the Cryptococcus neoformans species complex. Annu. Rev. Microbiol. 60, 69–105 (2006).
    Lindell, D. M., Ballinger, M. N., McDonald, R. A., Toews, G. B. & Huffnagle, G. B. Immunologic homeostasis during infection: coexistence of strong pulmonary cell-mediated immunity to secondary Cryptococcus neoformans infection while the primary infection still persists at low levels in the lungs. J. Immunol. 177, 4652–4661 (2006).
    Coelho, C., Bocca, A. L. & Casadevall, A. The intracellular life of Cryptococcus neoformans. Annu Rev. Pathol.-Mech. 9, 219–238 (2014).
    Longo, D. et al. Harrison's Principles of Internal Medicine. 18th edn, 1, 2, (McGraw-Hill: New York, 2011).
    Zaragoza, O. et al. The capsule of the fungal pathogen Cryptococcus neoformans. Adv. Appl. Microbiol. 68, 133–216 (2009).
    Casadevall, A., Rosas, A. L. & Nosanchuk, J. D. Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 3, 354–358 (2000).
    Casadevall, A., & Perfect, J. R. Cryptococcus neoformans. (ASM Press: Washington, DC, 1998).
    Almeida, F., Wolf, J. M. & Casadevall, A. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot. Cell. (2015).
    Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).
    da Silva, T. A., Roque-Barreira, M. C., Casadevall, A. & Almeida, F. Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci. Rep. 6, 35867 (2016).
    Oliveira, D. L. et al. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect. Immun. 78, 1601–1609 (2010).
    Rodrigues, M. L. et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell 7, 58–67 (2008).
    Vargas, G. et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell. Microbiol. 17, 389–407 (2015).
    Wolf, J. M., Rivera, J. & Casadevall, A. Serum albumin disrupts Cryptococcus neoformans and Bacillus anthracis extracellular vesicles. Cell. Microbiol. 14, 762–773 (2012).
    Fermino, M. L. et al. Galectin-3 negatively regulates the frequency and function of CD4(+)CD25(+)Foxp3(+) regulatory T cells and influences the course of Leishmania major infection. Eur. J. Immunol. 43, 1806–1817 (2013).
    Ferraz, L. C. et al. Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. Eur. J. Immunol. 38, 2762–2775 (2008).
    van den Berg, T. K. et al. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J. Immunol. 173, 1902–1907 (2004).
    Baum, L. G., Garner, O. B., Schaefer, K. & Lee, B. Microbe−host interactions are positively and negatively regulated by galectin−glycan interactions. Front. Immunol. 5, 284 (2014).
    Breuilh, L. et al. Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect. Immun. 75, 5148–5157 (2007).
    Bernardes, E. S. et al. Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am. J. Pathol. 168, 1910–1920 (2006).
    Ruas, L. P. et al. Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS ONE 4, e4519 (2009).
    Linden, J. R., De Paepe, M. E., Laforce-Nesbitt, S. S. & Bliss, J. M. Galectin-3 plays an important role in protection against disseminated candidiasis. Med. Mycol. 51, 641–651 (2013).
    Wu, S. Y., Yu, J. S., Liu, F. T., Miaw, S. C. & Wu-Hsieh, B. A. Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J. Immunol. 190, 3427–3437 (2013).
    Chen, H. L., Liao, F., Lin, T. N. & Liu, F. T. Galectins and neuroinflammation. Adv. Neurobiol. 9, 517–542 (2014).
    Saegusa, J. et al. Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am. J. Pathol. 174, 922–931 (2009).
    Cherayil, B. J., Chaitovitz, S., Wong, C. & Pillai, S. Molecular cloning of a human macrophage lectin specific for galactose. Proc. Natl. Acad. Sci. USA 87, 7324–7328 (1990).
    Liu, F. T. et al. Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am. J. Pathol. 147, 1016–1028 (1995).
    Sano, H. et al. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Invest. 112, 389–397 (2003).
    Vasta, G. R. Roles of galectins in infection. Nat. Rev. Microbiol. 7, 424–438 (2009).
    Liu, F. T. & Hsu, D. K. The role of galectin-3 in promotion of the inflammatory response. Drug News Perspect. 20, 455–460 (2007).
    Krzeslak, A. & Lipinska, A. Galectin-3 as a multifunctional protein. Cell Mol. Biol. Lett. 9, 305–328 (2004).
    Fermin Lee, A. et al. Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am. J. Pathol. 183, 1209–1222 (2013).
    Wozniak, K. L., Hardison, S. E., Kolls, J. K. & Wormley, F. L. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS ONE 6, e17204 (2011).
    Wozniak, K. L., Kolls, J. K. & Wormley, F. L. Jr. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by gammadelta T cells. BMC Immunol. 13, 65 (2012).
    Zhang, Y. et al. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am. J. Pathol. 175, 2489–2500 (2009).
    Murdock, B. J., Huffnagle, G. B., Olszewski, M. A. & Osterholzer, J. J. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect. Immun. 82, 937–948 (2014).
    Jouault, T. et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177, 4679–4687 (2006).
    Hernandez-Santos, N. & Gaffen, S. L. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012).
    Fradin, C., Poulain, D. & Jouault, T. Beta-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect. Immun. 68, 4391–4398 (2000).
    Henrick, K., Bawumia, S., Barboni, E. A. M., Mehul, B. & Hughes, R. C. Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Glycobiology 8, 45–57 (1998).
    Kohatsu, L., Hsu, D. K., Jegalian, A. G., Liu, F. T. & Baum, L. G. Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J. Immunol. 177, 4718–4726 (2006).
    Doering, T. L. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu. Rev. Microbiol. 63, 223–247 (2009).
    Guazzelli, L., McCabe, O. & Oscarson, S. Synthesis of part structures of Cryptococcus neoformans serotype C capsular polysaccharide. Carbohyd. Res. 433, 5–13 (2016).
    Ascenzi, P. & Fasano, M. Serum heme-albumin: an allosteric protein. IUBMB Life 61, 1118–1122 (2009).
    Meierhofer, T., van den Elsen, J. M., Cameron, P. J., Munoz-Berbel, X. & Jenkins, A. T. The interaction of serum albumin with cholesterol containing lipid vesicles. J. Fluoresc. 20, 371–376 (2010).
    Hsu, D. K. et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am. J. Pathol. 156, 1073–1083 (2000).
    Oliveira, A. F. et al. Paracoccin distribution supports its role in Paracoccidioides brasiliensis growth and dimorphic transformation. PLoS ONE 12, e0184010 (2017).
    Casadevall, A. et al. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob. Agents Chemother. 42, 1437–1446 (1998).
    Chaturvedi, A. K. et al. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice. PLoS ONE 9, e104316 (2014).
    Rodrigues, M. L. et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell 6, 48–59 (2007).
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).