Ver registro no DEDALUS
Exportar registro bibliográfico



Structural characterization of bioactive glasses by solid state NMR (2018)

  • Authors:
  • USP affiliated authors: ECKERT, HELLMUT - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s10971-018-4795-7
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10971-018-4795-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ECKERT, Hellmut. Structural characterization of bioactive glasses by solid state NMR. Journal of Sol-Gel Science and Technology, New York, Springer, v. No 2018, n. 2, p. 263-295, 2018. Disponível em: < > DOI: 10.1007/s10971-018-4795-7.
    • APA

      Eckert, H. (2018). Structural characterization of bioactive glasses by solid state NMR. Journal of Sol-Gel Science and Technology, No 2018( 2), 263-295. doi:10.1007/s10971-018-4795-7
    • NLM

      Eckert H. Structural characterization of bioactive glasses by solid state NMR [Internet]. Journal of Sol-Gel Science and Technology. 2018 ; No 2018( 2): 263-295.Available from:
    • Vancouver

      Eckert H. Structural characterization of bioactive glasses by solid state NMR [Internet]. Journal of Sol-Gel Science and Technology. 2018 ; No 2018( 2): 263-295.Available from:

    Referências citadas na obra
    Hench LL, Splinter RJ, Greenlee TK, Allen WC (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141
    Hench LL (1991) Bioceramics. From Concept to Clinic. J Am Ceram Soc 74:1487–1510
    Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 17:1967–1978
    Montazerian M, Zanotto ED (2017) Bioactive glass ceramics: processing, properties, and applications. RSC Smart. Materials 23:27–60
    Jones JR, Clare AG Bio-glasses: An introduction Wiley 2012 and references therein
    Hench LL, Jones JR (2015) Bioactive glasses: Frontiers and challenges. Front Bioeng Biotechnol 3:194 PMC–4663244
    Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373
    Yu H, Peng J, Xu Y, Chang J, Li H (2016) Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interf 13:703–715
    Naseri S, Lepry WC, Nazhat SN (2017) Bioglasses in wound healing. Hope Or hype? J Mater Chem B 5:6167–6174
    Siqueira RL, Peitl O, Zanotto ED (2011) Gel derived SiO2-CaO-Na2O-P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Engin C 31:983–991
    Arcos D, Vallet-Regi M (2010) Sol-gel silica based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888
    Wei GF, Yan XX, Yi J, Zhao LZ, Zhou L, Wang YH, Yu CZ (2011) Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Micro Mesopor Mater 143:157–165
    Combes C, Rey C (2010) Amorphous calcium phosphates. Syntheses, properties and their uses in biomaterials. Acta Biomater 69:3362–3378
    Assink L, Kay L (1991) Study of sol-gel chemical reaction kinetics by NMR. Ann Rev Mater Sci 1991 21:491–513
    Bonhomme C, Coelho C, Baccile N, Gervais C, Azais T, Babonneau F (2007) Advanced solid state NMR techniques for the characterization of sol-gel materials. Acc Chem Res 40:738–746
    Babonneau F, Bonhomme C (2015) Solid state NMR characterization of sol-gel materials: Recent advances, The Sol-Gel Handbook, Levy D, Zayat M, (eds). vol III. Wiley VCH, pp. 651–673
    Smith ME, Holland D (2004) Atomic scale structure of gel materials by solid state NMR. In: Sakka S (ed) Handbook of sol-gel science and technology, vol II. Klüwer Acad Publ, pp. 35–64
    Eckert H (1992) Structural characterization of non-crystalline solids and glasses by solid state NMR. Prog NMR Spectrosc 24:159–293
    Edén M (2012) NMR studies of oxide glasses. Ann Rep Prog Chem Sect C 108:177–231
    Charpentier T, Menziani MC, Pedone A (2013) Computational simulations of solid state NMR spectra: A new era in structure determination of oxide glasses. RSC Adv 3:10550–10578
    Charpentier T (2011) The PAW/GIPAW approach of computing NMR parameters: a new dimension added to NMR studies of solids. Solid State Nucl Magn Reson 40:1–20
    Pedone A (2017) What can we learn from molecular dynamics simulations of bioactive glasses. Adv Struct Mater 53:119–145
    Massiot D, Messinger RJ, Cadars S, Deschamps M, Montouillot V, Pellerin N, Veron E, Allix M, Florian P, Fayon F (2013) Topological, geometrical and chemical order in materials: Insights from solid state NMR. Acc Chem Res 46:1945–1984
    Eckert H, Elbers S, Epping JD, Janssen M, Kalwei M, Strojek W, Voigt U (2005) Dipolar solid state NMR approaches towards medium-range structure in glasses. Top Curr Chem 246:195–233
    Bonhomme C, Gervais C, Laurencin D (2014) Recent NMR developments applied to organic-inorganic materials. Prog Nucl Magn Reson Spectrosc 77:1–48
    Dey P, Pal SK, Sarkar R (2014) Effect of alumina addition to 45S5 glass. Transact Ind Ceram Soc 73:105–109
    Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524
    O’ Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6:2382–2385
    Brauer DS (2015) Bioactive glasses –structure and properties. Angew Chem 54:4160–4181
    Rivadeneira J, Gorustovich A (2016) Bioactive glasses as delivery systems for antimicrobial agents. J Appl Microbiol 122:1424–1437
    Ylänen H (2017) Bioactive glasses: materials, properties and applications. Woodhead publishing series in biomaterials
    Boccaccini AR, Brauer DS, Hupa L (eds) (2016) Bioactive glasses: Fundamentals, technology and applications. Royal Society of Chemistry
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface structure changes in bioactive glass ceramic J Biomed Mater Res 24:721–734
    Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro by SBF solution? Biomater 30:2175–2179
    Oliver WC, Pharr GM (1992) Nanoindentation in materials research: Past, present, and future. J Mater Res 7:1564
    Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851
    Edén M (2011) The split network analysis for exploring composition-structure correlations in multi-component glasses: I. Rationalizing bioactivity-composition trends of bioglasses. J Non-Cryst Solids 357:1595–1602
    Duer MJ (2004) Introduction into solid state NMR spectroscopy, Blackwell, London
    Levitt MH (2008) Spin dynamics. Basics of nuclear magnetic resonance, J Wiley & Sons
    Eckert H (2017) Medium-range order in oxide glasses. In: Dronskowski, Stein, Kikkawa (eds) Handbook of solid state chemistry and materials science. J Wiley & Sons, pp. 93–137
    Templin M, Wiesner U, Spiess HW (1997) Multinuclear solid state NMR studies of inorganic-organic hybrid materials. Adv Mater 9:814–817
    Eckert H (2010) Short and medium range order in ion conducting glasses studied by modern solid state NMR techniques. Z Phys Chem 224:1591–1653
    Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Inst 37:93–102
    Mathew R, Stevensson B, Tilocca A, Edén M (2014) Toward a rational design of bioactive glasses with optimal structural features: Composition-structure correlations unveiled by solid-state NMR and MD simulations. J Phys Chem B 118:833–844
    Stone NJ (2016) Nuclear electric quadrupole moments. At Data Nucl Tables 111-112:1–28
    Freude D, Haase J (1993) Quadrupole effects in solid state nuclear magnetic resonance. NMR Basic Princ Progress 29:1–90
    D’Espinose de Lacaillerie JB, Fretigny C, Massiot D (2008) MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model. J Magn Reson 192:244–251
    Medek A, Harwood JS, Frydman L (1995) Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids. J Am Chem Soc 117:12779–12787
    Amoureux JP, Fernandez C, Steuernagel S (1996) Z Filtering in MQMAS NMR. J Magn Reson A 123:116–118
    Schurko RW (2013) Ultra-wideline solid-state NMR spectroscopy. Acc Chem Res 46:1985–1995
    O’Dell LA (2013) The WURST kind of pulses in solid state NMR. Solid State Nucl Magn Reson 55-56:28–41
    Van Vleck JH (1948) The dipolar broadening of magnetic resonance lines in crystals. Phys Rev 74:1168–1183
    Gullion T, Schaefer J (1989) Rotational echo double resonance NMR. J Magn Reson 81:196–200
    Grey CP, Veeman WS, Vega AJ (1993) Rotational echo 14N/13C/1H triple resonance solid state nuclear magnetic resonance: A probe of 13C-14N internuclear distances. J Chem Phys 98:7711–7724
    Gullion T, Vega A (2005) Measuring heteronuclear dipolar couplings for I = 1/2, S > 1/2 spin pairs by REDOR and REAPDOR NMR. Prog Nucl Magn Reson Spectrosc 47:123–126
    Bertmer M, Eckert H (1999) Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. Solid State Nucl Magn Reson 15:139–152
    Fayon F, Duée C, Poumeyrol T, Allix M, Massiot D (2013) Evidence of nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J Phys Chem C 117:2283–2288
    Feike M, Demco DE, Graf R, Gottwald J, Hafner S, Spiess HW (1996) Broadband multiple-quantum NMR spectroscopy. J Magn Reson A 122:214–221
    Geen H, Titman JJ, Gottwald J, Spiess HW (1994) Solid state proton multiple-quantum NMR with fast magic angle spinning. Chem Phys Lett 227:79–86
    Saalwächter K, Lange F, Matyjaszewski K, Huang CF, Graf R (2011) BaBaxy16: Robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. J Magn Reson 212:204–215
    Mathew R, Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, Garcia A, Acros D, Vallet-Regi M, Edén M (2013) Direct probing of the phosphate ion distribution in bioactive silicate glasses by solid-state NMR: Evidence for transitions between random/clustered scenarios. Chem Mater 25:1877–1885
    Wasylishen R (2012) Indirect nuclear spin-spin coupling tensors. In: Harris RK, Wasylishen RE, (eds) Encyclopedia of NMR spectroscopy, J Wiley & Sons, vol. 4. pp. 2075–2083
    Franke D, Hudalla C, Eckert H (1992) Spectral editing in MAS NMR of aprotic solids: 31P-113Cd cross-polarization and heteronuclear double-quantum filtering studies in II-IV-V, semiconductor alloys. Solid State Nucl Magn Reson 1:297–306
    Franke D, Hudalla C, Eckert H (1992) Heteronuclear X-Y double quantum MAS NMR in crystalline inorganic solids. Solid State Nucl Magn Reson 1:33–40
    Coelho C, Babonneau F, Azais T, Bonhomme-Coury L, Maquet J, Laurent G, Bonhomme C (2006) Chemical bonding in silicophosphate gels: Contribution of dipolar and J-derived solid state NMR techniques. J Sol Gel Sci Technol 40:181–189
    Coelho C, Azais T, Bonhomme C, Bonhomme-Coury L, Boissière C, Laurent G, Massiot D (2008) Efficiency of dipolar and J-derived solid-state NMR techniques for a new pair of nuclei {31P,29Si}. Towards the characterization of Si-O-P mesoporous materials. Compt Rend Chim 11:387–397
    Lesage A, Bardet M, Emsley L (1999) Through-bond carbon−carbon connectivities in disordered solids by NMR. J Am Chem Soc 121:10987–10993
    Guerry P, Smith ME, Brown SP (2009) 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: Revealing J coupling and chemical shift two-dimensional correlations in disordered solids. J Am Chem Soc 131:11861–11874
    Stevensson B, Mathew R, Yu Y, Edén M (2015) Two heteronuclear dipolar results at the price of one: Quantifying Na/P contacts in phosphosilicate glasses and biomimetic hydroxy-apatite. J Magn Reson 251:52–56
    Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76
    Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330
    Perras FA, Widdifield CM, Bryce DL (2012) QUEST—QUadrupolar exact SofTware: A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei. Solid State Nucl Magn Reson 45-46:36–44
    Gauss J, Stanton (2002) Electron-correlated approaches for the calculation of NMR chemical shifts, in Advances in chemical physics. Prigogine L, Rice SA (eds), John Wiley & Sons, vol. 123. pp. 355-422
    Kaupp M, Malkin VG (2004) Calculation of NMR and EPR parameters, Wiley-VCH Weinheim, Germany
    Pedone A, Charpentier T, Malavasi G, Menziani MC (2010) New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem Mater 22:5644–5652
    Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P, Pedone A, Segre U (2008) Medium-range order in phospho-silicate bioactive glasses: Insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations. J Non-Cryst Solids 354:84–89
    Elgayar I, Aliev AE, Boccaccini AR, Hill RG (2005) Structural analysis of bioactive glasses. J Non-Cryst Solids 351:173–183
    Mathew R, Stevensson B, Edén M (2015) Na/Ca Intermixing around silicate and phosphate groups in bioactive phosphosilicate glasses revealed by heteronuclear solid-state NMR and molecular dynamics simulations. J Phys Chem B 119:5701–5715
    Grussaute H, Montagne L, Palavit G, Bernard GL (2000) Phosphate speciation in SiO2-CaO-Na2O-P2O5 and SiO2-TiO2-Na2O-P2O5 glasses. J Non-Cryst Solids 263-264:312–317
    Lockyer MWG, Holland D, Dupree R (1995) NMR investigation of the structure of some bioactive and related glasses. J Non-Cryst Solids 188:207–219
    Li A, Ren H, Cui Y, Yang C, Zhou X, Lin H, Qiu D (2017) Detailed structure of a new bioactive glass composition for the design of bone repair materials. J Non-Cryst Solids 475:10–14
    Stevensson B, Mathew R, Edén M (2014) Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations. J Phys Chem B 118:8863–8876
    Mercier C, Follet-Houttemane C, Pardini A, Revel B (2011) Influence of P2O5 content on the structure of SiO2-Na2O-CaO-P2O5 bioglasses by 29Si and 31P MAS-NMR. J Non-Cryst Solids 357:3901–3909
    O’Donnell MD, Watts SJ, Law RV, Hill RG (2008) Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties - Part I: NMR. J Non-Cryst Solids 354:3554–3560
    Leonova E, Izquierdo-Barba I, Arcos D, López-Noriega A, Hedin N, Vallet-Regí M, Edén M (2008) Multinuclear solid-state NMR studies of ordered mesoporous bioactive glasses. J Phys Chem C 112:5552–5562
    Carta D, Newport RJ, Knowles JC, Smith ME, Guerry P (2011) Sol-gel produced sodium calcium phosphosilicates for bioactive applications: Synthesis and structural characterisation. Mater Chem Phys 130:690–696
    Ting HK, Page SJ, Poologasundarampillai G, Chen S, Yu B, Hanna JV, Jones JR (2017) Phosphate content affects structure and bioactivity of sol-gel silicate bioactive glasses. Int J Appl Glass Sci 8:372–382
    Zhao S, Li Y, Li D (2011) Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process. J Mater Sci: Mater Med 22:201–208
    Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J Mater Chem 19:1276–1282
    Coleman NJ, Bellantone M, Nicholson JW, Mendham AP (2007) Textural and structural properties of bioactive glasses in the system CaO-SiO2 Ceramics. Silikaty 51:1–8
    Lucas-Girot A, Mezahi FZ, Mami M, Oudadesse H, Harabi A, Le Floch M (2011) Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5: Comparison with melting method. J Non-Cryst Solids 357:3322–3327
    Ben-Arfa BAE, Miranda Salvado IM, Ferreira JMF, Pullar RC (2017) A hundred times faster: Novel, rapid sol-gel synthesis of bio-glass nanopowders (Si-Na-Ca-P system, Ca:P = 1.67) without aging. Int J Appl Glass Sci 8:337–343
    Zagrajczuk B, Dziadek M, Olejniczak Z, Cholewa-Kowalska K, Laczka M (2017) Structural and chemical investigation of the gel-derived bioactive materials from the SiO2–CaO and SiO2-CaO-P2O5 systems. Ceram Int 43:12742–12754
    Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K (2016) Structural variations of bioactive glasses obtained by different synthesis routes. Ceram Int 42:14700–1470
    Matsuya S, Matsuya Y (1999) Structure of bioactive glass and its application to glass ionomer cements. Dent Mater 18:155–166
    Ren J, Doerenkamp C, Eckert H (2016) High Surface area mesoporous GaPO4-SiO2 sol-gel glasses: Structural investigation by advanced solid state NMR. J Phys Chem C 120:1758–1769
    Li Y, Placek LM, Coughlan A, Laffir FR, Pradhan D, Mellott NP, Wren AW (2015) Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO Na2O/SrO bioactive glass. J Mater Sci: Mater Med 26:85/1–12
    Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV (2012) Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. J Mater Chem 22:7395–7402
    Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C (2004) The influence of strontium substitution in fluoroapatite glasses and glass ceramics J Non-Cryst Solids 336:223–229
    Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J Mater Chem 22:7395–7402
    Bonhomme C, Gervais C, Folliet N, Pourpoint F, Coelho Diogo C, Lao J, Jallot E, Lacroix J, Nedelec J-M, Iuga D, Hanna JV, Smith ME, Xiang Y, Du J, Laurencin D (2012) 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: Antiosteoporotic pharmaceuticals and bioactive glasses. J Am Chem Soc 134:12611–12628
    Galliano PG, López JMP, Varetti EL, Sobrados I, Sanz J (1994) Analysis by nuclear magnetic resonance and Raman spectroscopies of the structure of bioactive alkaline-earth silicophosphate glasses. Mater Res Bull 29:1297–1306
    Souza MT, Crovace MC, Schröder C, Eckert H, Peitl O (2013) Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in bioglass-derived glasses. J Non-Cryst Solids 382:57–65
    Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524
    Aguiar H, Solla EL, Serra J, González P, León B, Malz F, Jäger C (2008) Raman and NMR study of bioactive Na2O-MgO-CaO-P2O5-SiO2 glasses. J Non-Cryst Solids 354:5004–5008
    Oliveira JM, Correia RN, Fernandes MH, Rocha J (2000) Influence of the CaO/MgO ratio on the structure of phase separated glasses: a solid state 31P and 29Si NMR study. J Non-Cryst Solids 265:221–229
    Youngman R (2018) NMR Spectroscopy in glass science: A review of the elements, Materials 11:476
    Limbach R, Karlsson S, Scannell G, Mathew R, Edén M, Wondraczek L (2017) The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications for thermal and mechanical properties. J Non-Cryst Solids 471:6–18
    Placek LM, Keenan TJ, Li Y, Yatongchai C, Pradhan D, Boyd D, Mellott NP, Wren AW (2016) Investigating the effect of TiO2 on the structure and biocompatibility of bioactive glass. J Biomed Mater Res - Part B Appl Biomater 104:1703–1712
    Wren AW, Keenan T, Coughlan A, Lafir FR, Boyd D, Towler MR, Hall MM (2013) Characterization of Ga2O3-Na2O-CaO-ZnO-SiO2 bioglasses. J Mater Sci 2013 48:3999–4007
    Kilcup N, Gaynard S, Werner-Zwanziger U, Tonkopi E, Hayes J, Boyd D (2015) Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. J Biomater Appl 30:1445–1459
    Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P, Segre U (2005) Qualitative and quantitative structure-property relationships analysis of multicomponent potential bioglasses. J Phys Chem B 109:4989–4998
    Lopes JH, Magalhães A, Mazali IO, Bertran CA (2014) Effect of niobium oxide on the structure and properties of melt-derived bioactive glasses. J Am Ceram Soc 97:3843–3852
    Alhalawani AM, Towler MR (2017) novel tantalum-containing bioglass Part I. Structure and solubility. Mater Sci Engin C 72:202–210
    Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues AM, Zanotto ED (2015) Sol-gel synthesis, structure, sintering and properties o bioactive and inert nano-apatite-zirconia glass-ceramics. Ceram Int 41:11024–11045
    Zhang XF, Kehoe S, Adhi SK, Ajithkumar TG, Moane S, O’Shea H, Boyd D (2011) Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si-Na-Ca-Zn-Ce glasses: Potential components for nerve guidance conduits. Mater Sci Engin C 31:669–676
    Balasubramanian P, Buettner T, Miguez PV, Boccaccini AR (2018) Boron-containing bioactive glasses in bone and soft-tissue engineering. J Eur Ceram Soc 38:855–869
    Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295
    Rico P, Rodrigo-Navarro A, Salmerón-Sánchez M (2015) Borax-loaded PLLA for promotion of myogenic differentiation. Tissue Eng A 21:2662–2672
    Sych O, Gunduz O, Pinchuk N, Stan GE, Oktar (2016) Tissue engineering scaffolds from La2O3-hydroxyapatite/boron glass composites. J Austral Ceram Soc 52:103–110
    Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li W, Lam W, Lu WW, Wang DP, Huang WH, Lin KL, Chang J (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interf 7:1025–1031
    Wu C, Miron R, Sculean A, Kaskel S, Doert T, Schulze R, Zhang Y (2011) Proliferation, differentiation and gene expression of osteoblasts in boron-containing bioglasses associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32:7068–7078
    Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295
    Yang Q, Chen S, Shi H, Xiao H, Ma Y (2015) In vitro study of improved wound-healing effect of bioactive borate-based glass nano/micro-fibers. Mater Sci Engin C 55:105–107
    Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B (2000) Gel-derived materials of a CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res 52:601–612
    Yu Y, Stevensson B, Edén M (2017) Medium-range structural organization of phosphorus-bearing borosilicate glasses revealed by advanced solid-state NMR experiments and MD simulations: Consequences of B/Si substitutions. J Phys Chem B 121:9737–9752
    Tsai TWT, Mou Y, Tseng YH, Zhang L, Chan JCC (2008) Solid-state NMR study of bioactive binary borosilicate glasses. J Phys Chem Solids 69:2628–2633
    Yu Y, Edén M (2016) Structure-composition relationships of bioactive borophosphosilicate glasses probed by multinuclear 11B, 29Si, and 31P solid state NMR. RSC Adv 6:101288–101303
    Eden M, Sundberg P, Stalhandske C (2011) The split network analysis for exploring composition-structure correlations in multicomponent glasses: II. Multinuclear NMR studies of alumino-borosilicates and glass wool fibers. J Non-Cryst Solids 357:1587–1594
    Edén M (2009) Homonuclear dipolar recoupling of half-integer quadrupolar nuclei. Techniques and applications. Solid State Nucl Magn Reson 36:1–10
    Sitarz M, Fojud Z, Olejniczak Z (2009) The aluminium effect on the structure of silico-phosphate glasses studied by NMR and FTIR. J Mol Struct 924-926:107–110
    Malavasi G, Pedone A, Menziani MC (2013) Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J Phys Chem B 117:4152–4150
    Melchers S, Uesbeck T, Winter O, Eckert H, Eder D (2016) Effect of aluminium ion incorporation on the bioactivity and structure in mesoporous bioactive glasses. Chem Mater 28:3254–3264
    Kilcup N, Gaynard S, Werner-Zwanziger U, Tonkopi E, Hayes J, Boyd D (2015) Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. J Biomater Appl 30:1445–1459
    Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M (2012) Structural and in vitro study of cerium, gallium and zinc containing sol-gel bioactive glasses. J Mater Chem 22:13698–13706
    Bachar A, Mercier C, Tricoteaux A, Leriche A, Follet C, Saadi M, Hampshire S (2012) Effects of addition of nitrogen on bioglass properties and structure. J Non-Cryst Solids 358:693–701
    Bachar A, Mercier C, Tricoteaux A, Leriche A, Follet-Houttemane C, Saadi M, Hampshire S (2013) Effects of nitrogen on properties of oxyfluoronitride bioglasses. Process Biochem 48:89–95
    Matsuya S, Stamboulis A, Hill RG, Law RV (2007) Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy. J Non-Cryst Solids 353:237–243
    Pedone A, Charpentier T, Menziani MC (2012) The structure of fluoride-containing bioactive glasses: New insights from first-principles calculations and solid state NMR spectroscopy. J Mater Chem 22:12599–12608
    Chen X, Chen X, Brauer DS, Wilson RM, Hill RG, Karpukhina N (2014) Bioactivity of sodium free fluoride containing glasses and glass-ceramics. Mater (Basel) 7:5470–5487
    Chen X, Chen X, Brauer DS, Wilson RM, Hill RG, Karpukhina N (2014) Novel alkali free bioactive fluorapatite glass ceramics. J Non-Cryst Solids 402:172–177
    Hill R, Calver A, Skinner S, Stamboulis A, Law RV (2006) A MAS-NMR and combined Rietveldt study of mixed calcium/strontium fluorapatite glass-ceramics. Key Engin Mater 309-311:305–308
    Brauer DS, Karpukhina N, Seah D, Law RV, Hill RG (2008) Fluoride-containing bioactive glasses. Adv Mater Res 39–40:299–304 (Glass-The Challenge for the 21st Century-9th ESG Conference with the Annual Meeting of the ICG; Trencin; Slovakia; 22–26 June 2008)
    Brauer DS, Karpukhina N, Law RV, Hill RG (2009) Structure of fluoride-containing bioactive glasses. J Mater Chem 19:5629–5636
    Hill RG, Law RV, O’Donnell MD, Hawes J, Bubb NL, Wood DJ, Miller CA, Mirsaneh M, Reaney I (2009) Characterisation of fluorine containing glasses and glass-ceramics by 19F magic angle spinning nuclear magnetic resonance spectroscopy. J Eur Ceram Soc 29:2185–2191
    Hill RG, Stamboulis A, Law RV (2006) Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy. J Dent 34:525–532
    Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG (2010) Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6:3275–3282
    Chen X, Chen X, Brauer DS, Wilson RM, Law RV, Hill RG, Karpukhina N (2017) Sodium is not essential for high bioactivity of glasses. Int J Appl Glass Sci 8:428–437
    Kusumoto H, Abolghasemi S, Woodfine B, Hill RG, Law RV (2016) The effect of phosphate, fluorine, and soda content of the glass on the mechanical properties of the glass ionomer (polyalkenoate) cements. J Non-Cryst Solids 449:94–99
    Zhang L, de Araujo CC, Eckert H (2007) Structural role of fluoride in aluminophosphate sol-gel glasses: High-resolution double-resonance NMR studies. J Phys Chem B 111:10402–10412
    Chan JCC, Ohnsorge R, Meise-Gresch K, Eckert H, Höland W (2001) Apatite crystallization in an aluminosilicate glass matrix: Mechanistic studies by X-ray powder diffraction, thermal analysis and multinuclear solid state NMR spectroscopy. Chem Mater 13:4198–4206
    Eckert H (2018) Sol-gel synthesis of non-siliceous glasses and their structural characterization by solid state NMR. In: Lisa Klein (ed) Handbook of sol-gel science and technology, Springer, vol. III. pp. 1323–1373
    Carta D, Pickup DM, Newport RJ, Knowles JC, Smith ME, Drake KO (2005) Structural studies of bioactive sol-gel phosphate based glasses. Phys Chem Glass 46:365–371
    Carta D, Knowles JC, Smith ME, Newport RJ (2007) Synthesis and structural characterization of P2O5-CaO-Na2O sol-gel materials. J Non-Cryst Solids 353:1141–1149
    Carta D, Pickup DM, Knowles JC, Ahmed I, Smith ME, Newport RJ (2007) A structural study of sol-gel and melt-quenched phosphate-based glasses. J Non-Cryst Solids 353:1759–1765
    Mandlule A, Döhler F, Van Wüllen L, Kasuga T, Brauer DS (2014) Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J Non-Cryst Solids 392-393:31–38
    Pickup DM, Guerry P, Moss RM, Knowles JC, Smith ME, Newport RJ (2007) New sol-gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterization. J Mater Chem 17:4777–4784
    Brauer DS, Karpukhina N, Law RV, Hill RG (2010) Effect of TiO2 addition on structure, solubility and crystallization of phosphate invert glasses for biomedical applications. J Non-Cryst Solids 356:2626–2633
    Brauer DS, Rüssel C, Kraft J (2007) Solubility of glasses in the system P2O5-CaO-MgO-Na2O-TiO2: Experimental and modeling using artificial neural networks. J Non-Cryst Solids 353:263–270
    Foroutan F, Walters NJ, Owens GJ, Mordan NJ, Kim HW, de Leeuw NH, Knowles JC (2015) Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2)x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15). Biomed Mater 10:045025
    Foroutan F, de Leeuw NH, Martin RA, Palmer G, Owens GJ, Kim HW, Knowles JC (2014) Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)x (TiO2)(0.35−x) bioresorbable glasses (x = 0.05, 0.1, and 0.15). J Sol-Gel Sci Technol 73:434–442
    Smith JM, King SP, Barney ER, Hanna JV, Newport RJ, Pickup DM (2013) Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content. J Chem Phys 138:034501
    Pickup DM, Valappil SP, Moss RM, Twyan HL, Guerry P, Smith ME, Wilson M, Knowles JC, Newport RJ (2009) Preparation, structural characterization and antibacterial properties of Ga-doped sol-gel phosphate-based glass. J Mater Sci 44:1858–1867
    Valappil SP, Ready D, Neel EAA, Pickup DM, O’Dell LA, Chrzanowski W, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2009) Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater 5:1198–1210
    Valappil SP, Ready D, Neel EAA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC (2008) Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater 18:732–741
    Valappil SP, Pickup DM, Carroll DL, Hope CK, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2007) Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob Agents Chemother 51:4453–4461
    Shaharyar Y, Wein E, Kim JJ, Youngman RE, Muñoz F, Kim HW, Tilocca A, Goel A (2015) Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J Mater Chem B 3:9360–9373
    Zhang L, Eckert H (2006) Short- and medium-range order in sodium aluminophosphate glasses: New insights from high-resolution dipolar solid state NMR spectroscopy. J Phys Chem B 110:8946–8958
    Carta D, Knowles JC, Guerry P, Smith ME, Newport RJ (2009) Sol-gel synthesis and structural characterisation of P2O5-B2O3-Na2O glasses for biomedical applications. J Mater Chem 19:150–158
    Sharmin N, Hasan M, Rudd C, Boyd D, Werner-Zwanziger U, Ahmed I, Parsons AJ (2017) Effect of boron oxide addition on the viscosity-temperature behavior and structure of phosphate based glasses. J Biomed Mater Res B 105B:764–777
    Zielniok D, Cramer C, Eckert H (2007) Structure/property correlations in ion-conducting mixed network former glasses: Solid state NMR studies of the system Na2O-B2O3-P2O5. Chem Mater 19:3162–3170
    Yazdi AR, Towler M (2016) The effect of the addition of gallium on the structure of zinc borate glass with controlled gallium ion release. Mater Des 92:1018–1027
    Rodriguez O, Curran DJ, Papini M, Placek LM, Wren AW, Schemitsch EH, Zalzal P, Towler M (2016) Characterization of silica-based and borate based titanium containing bioactive glasses for coating metallic implants. J Non-Cryst Solids 433:95–102
    McDonald K, Hanson MA, Boyd D (2016) Modulation of strontium release from a tertiary borate glass through substitution of alkali for alkali earth oxide. J Non-Cryst Solids 443:184–191
    O’Connell K, Hanson M, O’Shea H, Boyd D (2015) Linear release of strontium ions from high borate glasses via lanthanide alkali substitutions. J Non-Cryst Solids 430:1–8
    Turcu FRV, Samoson A, Maier M, Trandafir DL, Simon S (2016) High fraction of penta-coordinated aluminum and gallium in lanthanum-aluminum-gallium borate. J Am Ceram Soc 99:2795–2800
    Mathew R, Turdean-Ionescu C, Yu Y, Stevensson B, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2017) Proton environments in biomimetic calcium phosphates formed from mesoporous bioactive CaO-SiO2-P2O5 glasses in vitro: Insights from solid-state NMR. J Phys Chem C 121:13223–13238
    Christie JK, Cormack AN, Hanna JV, Martin RA, Newport RJ, Pickup DM, Smith ME (2016) Bioactive sol–gel glasses at the atomic scale: The complementary use of advanced probe and computer modeling methods. Int J Appl Glass Sci 7:147–153
    Dietrich E, Oudadesse H, Floch ML, Bureau B, Gloriant T (2009) In vitro chemical reactivity of doped bioactive glasses: An original approach by solid-state NMR spectroscopy. Adv Engin Mater 11:B98–B105
    Lin KSK, Tseng YH, Mou Y, Hsu, Yang YC (2005) Mechanistic study of apatite formation on bioactive glass surface using 31P solid-state NMR spectroscopy. Chem Mater 17:4493–4501
    Skipper LJ, Sowrey FE, Pickup DM, Newport RJ, Drake KO, Lin ZH, Smith ME, Saravanapavan P, Hench LL (2005) The atomic-scale interaction of bioactive glasses with simulated body fluid. Mater Sci Forum 480–481:21–26 (1st International Meeting on Applied Physics, APHYS-2003; Badajoz; Spain; 13 October 2003 through 18 October 2003)
    Jones JR, Kemp TF, Smith ME (2006) Effect of OH content on the bioactivity of sol-gel derived glass foam scaffolds. Key Engin Mater 309-311:1031–1034
    Skipper LJ, Sowrey FE, Rashid R, Newport RJ, Lin Z, Smith ME (2005) X-ray diffraction and solid state NMR studies of the growth of hydroxyapatite on bioactive calcia:silica sol-gel glasses. Phys Chem Glass 46:372–376
    Vương BX, Hiệp ĐT (2016) In vitro studies of bioglass material by X-ray diffraction and solid-state MAS-NMR. Glass Phys Chem 42:188–193
    Gunawidjaja PN, Lo AYH, Izquierdo-Barba I, García A, Arcos D, Stevensson B, Grins J, Vallet-Regí M, Edén M (2010) Biomimetic apatite mineralization mechanisms of mesoporous bioactive glasses as probed by multinuclear 31P, 29Si, 23Na and 13C solid-state NMR. J Phys Chem C 114:19345–19356
    Mathew R, Gunawidjaja PN, Izquierdo-Barba I, Jansson K, García A, Arcos D, Vallet-Regí M, Edén M (2011) Solid-state 31P and 1H NMR investigations of amorphous and crystalline calcium phosphates grown biomimetically from a mesoporous bioactive glass. J Phys Chem C 115:20572–20582
    Gunawidjaja PN, Izquierdo-Barba I, Mathew R, Jansson K, García A, Grins J, Arcos D, Vallet-Regí M, Edén M (2012) Quantifying apatite formation and cation leaching from mesoporous bioactive glasses in vitro: A SEM, solid-state NMR and powder XRD study. J Mater Chem 22:7214–7223
    Turdean-Ionescu C, Stevensson B, Grins J, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2015) Composition-dependent in vitro apatite formation at mesoporous bioactive glass-surfaces quantified by solid-state NMR and powder XRD. RSC Adv 5:86061–86071
    Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2016) Surface reactions of mesoporous bioactive glasses monitored by solid-state NMR: Concentration effects in simulated body fluid. J Phys Chem C 120:4961–4974
    Sriangangathan D, Chen X, Hing KA, Kanwal N, Hill RG (2017) The effect of the incorporation of fluoride into strontium-containing bioactive glasses. J Non-Cryst Solids 457:25–30
    Mosbahi S, Oudadesse H, Wers E, Trigui M, Lefeuvre B, Roiland C, Elfeki H, Elfeki A, Rebai T, Keskes H (2016) Study of bioactive glass ceramic for use as bone biomaterial in vivo: Investigation by nuclear magnetic resonance and histology. Ceram Int 42:4827–4836
    Fujiu T, Ogino M (1984) Difference of bond bonding behavior among surface active glasses and sintered apatite. J Biomed Mater Res 18:845–859
    Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High-frequency dynamic polarization. Acc Chem Res 46:1933–1941
    Wittmann JJ, Eckhardt M, Harneit W, Corzilius B (2017) Dynamic nuclear polarization for sensitivity enhancement in solid state NMR. Prog NMR Spectrosc 102-103:120–195
    Rossini AJ, Zagdoun A, Lelli M, Lesage A, Coperet C, Emsley L (2013) Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 46:1942–1951
    Lee D, Crevant C, Bonhomme-Coury L, Babonneau F, Laurencin D, Bonhomme C, De Paëpe G (2017) Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy. Nat Commun 8:14104
    Leroy C, Aussenac F, Bonhomme-Coury L, Osaka A, Hayakaya S, Babonneau F, Coelho-Diogo C, Bonhomme C (2017) Hydroxyapatites. Key structural questions and answers from dynamic nuclear polarization. Anal, Chem 89:10201–10207