Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics (2018)

  • Authors:
  • USP affiliated authors: ZATZ, ROBERTO - FM
  • USP Schools: FM
  • DOI: 10.1007/s11306-018-1337-9
  • Subjects: VASOS CORONÁRIOS; LIPÍDEOS; DOENÇAS CARDIOVASCULARES
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Metabolomics
    • ISSN: 1573-3882
    • Volume/Número/Paginação/Ano: v. 14, n. 4, article ID 39, 9p, 2018
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11306-018-1337-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      TAVARES, Gesiane; VENTURINI, Gabriela; PADILHA, Kallyandra; et al. 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics. Metabolomics, New York, v. 14, n. 4, 2018. Disponível em: < http://dx.doi.org/10.1007/s11306-018-1337-9 > DOI: 10.1007/s11306-018-1337-9.
    • APA

      Tavares, G., Venturini, G., Padilha, K., Zatz, R., Pereira, A. C., Thadhian, R. I., et al. (2018). 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics. Metabolomics, 14( 4). doi:10.1007/s11306-018-1337-9
    • NLM

      Tavares G, Venturini G, Padilha K, Zatz R, Pereira AC, Thadhian RI, Rhee EP, Titan SMO. 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics [Internet]. Metabolomics. 2018 ; 14( 4):Available from: http://dx.doi.org/10.1007/s11306-018-1337-9
    • Vancouver

      Tavares G, Venturini G, Padilha K, Zatz R, Pereira AC, Thadhian RI, Rhee EP, Titan SMO. 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics [Internet]. Metabolomics. 2018 ; 14( 4):Available from: http://dx.doi.org/10.1007/s11306-018-1337-9

    Referências citadas na obra
    Afshinnia, F., Rajendiran, T. M., Soni, T., Byun, J., Wernisch, S., Sas, K. M., et al. (2018). Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. Journal of the American Society of Nephrology, 29(1), 295–306.
    Buse, J. B., Freeman, J. L., Edelman, S. V., Jovanovic, L., & McGill, J. B. (2003). Serum 1,5-anhydroglucitol (GlycoMark): A short-term glycemic marker. Diabetes Technology & Therapeutics, 5(3), 355–363.
    Chen, H., Cao, G., Chen, D. Q., Wang, M., Vaziri, N. D., Zhang, Z. H., et al. (2016). Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biology, 10, 168–178.
    Chen, H., Chen, L., Liu, D., Chen, D. Q., Vaziri, N. D., Yu, X. Y., et al. (2017). Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. Journal of Proteome Research, 16(4), 1566–1578.
    Chen, H., Miao, H., Feng, Y. L., Zhao, Y. Y., & Lin, R. C. (2014). Metabolomics in dyslipidemia. Advances in Clinical Chemistry, 66, 101–119.
    Cisek, K., Krochmal, M., Klein, J., & Mischak, H. (2016). The application of multi-.omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrology Dialysis Transplantation, 31(12), 2003–2011.
    Dungan, K. M., Buse, J. B., Largay, J., Kelly, M. M., Button, E. A., Kato, S., et al. (2006). 1,5-Anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care, 29(6), 1214–1219.
    Duranton, F., Lundin, U., Gayrard, N., Mischak, H., Aparicio, M., Mourad, G., et al. (2014). Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clinical Journal of the American Society of Nephrology, 9(1), 37–45.
    El Assar, M., Angulo, J., Santos-Ruiz, M., Ruiz de Adana, J. C., Pindado, M. L., Sánchez-Ferrer, A., et al. (2016). Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. Journal of Physiology, 594(11), 3045–3060.
    El-Bassossy, H. M., El-Fawal, R., Fahmy, A., & Watson, M. L. (2013). Arginase inhibition alleviates hypertension in the metabolic syndrome. British Journal of Pharmacology, 169(3), 693–703.
    Fiehn, O. (2016). Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 114, 30.4.1–30.4.32.
    Goek, O. N., Döring, A., Gieger, C., Heier, M., Koenig, W., Prehn, C., et al. (2012). Serum metabolite concentrations and decreased GFR in the general population. American Journal of Kidney Diseases, 60(2), 197–206.
    Goek, O. N., Prehn, C., Sekula, P., Römisch-Margl, W., Döring, A., Gieger, C., et al. (2013). Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrology Dialysis Transplantation, 28(8), 2131–2138.
    Hasslacher, C., & Kulozik, F. (2016). Effect of renal function on serum concentration of 1,5-anhydroglucitol in type 2 diabetic patients in chronic kidney disease stages I-III: A comparative study with HbA1c and glycated albumin. Journal of Diabetes, 8(5), 712–719.
    Hirayama, A., Nakashima, E., Sugimoto, M., Akiyama, S., Sato, W., Maruyama, S., et al. (2012). Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Analytical and Bioanalytical Chemistry, 404(10), 3101–3109.
    Hocher, B., & Adamski, J. (2017). Metabolomics for clinical use and research in chronic kidney disease. Nature Reviews Nephrology, 13(5), 269–284.
    Ikeda, N., Hara, H., & Hiroi, Y. (2014). 1,5-Anhydro-D-glucitol predicts coronary artery disease prevalence and complexity. Journal of Cardiology, 64(4), 297–301.
    Ikeda, N., Hara, H., & Hiroi, Y. (2015). Ability of 1,5-anhydro-d-glucitol values to predict coronary artery disease in a non-diabetic population. International Heart Journal, 56(6), 587–591.
    Ishii, N., Ikenaga, H., Carmines, P. K., Aoki, Y., Ogawa, Z., Saruta, T., et al. (2004). High glucose augments arginase activity and nitric oxide production in the renal cortex. Metabolism, 53(7), 868–874.
    Kameyama, T., & Inoue, H. (2014). Association of reduced levels of serum 1,5-anhydro-d-glucitol with carotid atherosclerosis in patients with type 2 diabetes. Journal of Diabetes and Its Complications, 28(3), 348–352.
    Kim, W. J., Park, C. Y., Lee, K. B., Park, S. E., Rhee, E. J., Lee, W. Y., et al. (2012). Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care, 35(2), 281–286.
    Kishimoto, M., Yamasaki, Y., Kubota, M., Arai, K., Morishima, T., Kawamori, R., et al. (1995). 1,5-Anhydro-D-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care, 18(8), 1156–1159.
    Kövamees, O., Shemyakin, A., Checa, A., Wheelock, C. E., Lundberg, J. O., Östenson, C. G., et al. (2016a). Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism 11, jc20162007.
    Kövamees, O., Shemyakin, A., Eriksson, M., Angelin, B., & Pernow, J. (2016b). Arginase inhibition improves endothelial function in patients with familial hypercholesterolaemia irrespective of their cholesterol levels. Journal of Internal Medicine, 279(5), 477–484.
    Lee, J., Choi, J. Y., Kwon, Y. K., Lee, D., Jung, H. Y., Ryu, H. M., et al. (2016). Hwang GS. Changes in serum metabolites with the stage of chronic kidney disease: Comparison of diabetes and non-diabetes. Clinica Chimica Acta 459, 123–131.
    Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F. 3rd, Feldman, H. I., et al. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612. (Erratum in: Ann Intern Med. 2011 Sep 20;155(6):408).
    Liang, M., McEvoy, J. W., Chen, Y., Sharrett, A. R., & Selvin, E. (2016). Association of a biomarker of glucose peaks, 1,5-anhydroglucitol, with subclinical cardiovascular disease. Diabetes Care, 39(10), 1752–1759.
    McMahon, G. M., Hwang, S. J., Clish, C. B., Tin, A., Yang, Q., Larson, M. G., et al. (2017). Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease. Kidney International, 91(6), 1426–1435.
    Mika, A., Wojtowicz, W., Ząbek, A., Młynarz, P., Chmielewski, M., Sledzinski, T., et al. (2018). Application of nuclear magnetic resonance spectroscopy for the detection of metabolic disorders in patients with moderate kidney insufficiency. Journal of Pharmaceutical and Biomedical Analysis, 149, 1–8.
    Ming, X. F., Barandier, C., Viswambharan, H., Kwak, B. R., Mach, F., Mazzolai, L., et al. (2004). Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: Implications for atherosclerotic endothelial dysfunction. Circulation, 110(24), 3708–3714.
    Ming, X. F., Rajapakse, A. G., Carvas, J. M., Ruffieux, J., & Yang, Z. (2009). Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor L-norvaline. BMC Cardiovascular Disorders, 9, 12.
    Mutsaers, H. A., Engelke, U. F., Wilmer, M. J., Wetzels, J. F., Wevers, R. A., van den Heuvel, L. P., et al. (2013). Optimized metabolomic approach to identify uremic solutes in plasma of stage 3–4 chronic kidney disease patients. PLoS ONE, 8(8), e71199.
    Niewczas, M. A., Mathew, A. V., Croall, S., Byun, J., Major, M., Sabisetti, V. S., et al. (2017). Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care, 40(3), 383–390.
    Niewczas, M. A., Sirich, T. L., Mathew, A. V., Skupien, J., Mohney, R. P., Warram, J. H., et al. (2014). Uremic solutes and risk of end-stage renal disease in type 2 diabetes: Metabolomic study. Kidney International, 85(5), 1214–1224.
    Nkuipou-Kenfack, E., Duranton, F., Gayrard, N., Argilés, À, Lundin, U., Weinberger, K. M., et al. (2014). Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS ONE, 9(5), e96955.
    Pokrovskiy, M. V., Korokin, M. V., Tsepeleva, S. A., Pokrovskaya, T. G., Gureev, V. V., Konovalova, E. A., et al. (2011). Arginase inhibitor in the pharmacological correction of endothelial dysfunction. International Journal of Hypertension, 2011, 515047.
    Rhee, E. P., Clish, C. B., Ghorbani, A., Larson, M. G., Elmariah, S., McCabe, E., et al. (2013). A combined epidemiologic and metabolomic approach improves CKD prediction. Journal of the American Society of Nephrology, 24(8), 1330–1338.
    Rhee, E. P., Clish, C. B., Wenger, J., Roy, J., Elmariah, S., Pierce, K. A., et al. (2016). Metabolomics of chronic kidney disease progression: A case-control analysis in the chronic renal insufficiency cohort study. American Journal of Nephrology, 43(5), 366–374.
    Romero, M. J., Iddings, J. A., Platt, D. H., Ali, M. I., Cederbaum, S. D., Stepp, D. W., et al. (2012). Diabetes-induced vascular dysfunction involves arginase I. American Journal of Physiology-Heart and Circulatory Physiology, 302(1), H159–H166.
    Saheki, T., Sato, Y., Takada, S., & Katsunuma, T. (1979). Regulation of urea synthesis in rat liver. Inhibition of urea synthesis by L-norvaline. The Journal of Biochemistry, 86(3), 745–750.
    Sekula, P., Goek, O. N., Quaye, L., Barrios, C., Levey, A. S., Römisch-Margl, W., et al. (2016). A metabolome-wide association study of kidney function and disease in the general population. Journal of the American Society of Nephrology, 27(4), 1175–1188.
    Selvin, E., Rawlings, A., Lutsey, P., Maruthur, N., Pankow, J. S., Steffes, M., et al. (2016). Association of 1,5-anhydroglucitol with cardiovascular disease and mortality. Diabetes, 65(1), 201–208.
    Selvin, E., Rawlings, A. M., Grams, M., Klein, R., Steffes, M., & Coresh, J. (2014). Association of 1,5-anhydroglucitol with diabetes and microvascular conditions. Clinical Chemistry, 60(11), 1409–1418.
    Shah, V. O., Townsend, R. R., Feldman, H. I., Pappan, K. L., Kensicki, E., & Vander Jagt, D. L. (2013). Plasma metabolomic profiles in different stages of CKD. Clinical Journal of the American Society of Nephrology, 8(3), 363–370.
    Sharma, K., Karl, B., Mathew, A. V., Gangoiti, J. A., Wassel, C. L., Saito, R., et al. (2013). Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. Journal of the American Society of Nephrology, 24(11), 1901–1912.
    Shemyakin, A., Kövamees, O., Rafnsson, A., Böhm, F., Svenarud, P., Settergren, M., et al. (2012). Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation, 126(25), 2943–2950.
    Tazawa, S., Yamato, T., Fujikura, H., Hiratochi, M., Itoh, F., Tomae, M., et al. (2005). SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sciences, 76(9), 1039–1050. (Erratum in: Life Sci. 2010 Oct 9;87(15–16):514).
    Titan, S. M., Vieira, J. M. Jr., Dominguez, W. V., Barros, R. T., & Zatz, R. (2011). ACEI and ARB combination therapy in patients with macroalbuminuric diabetic nephropathy and low socioeconomic level: A double-blind randomized clinical trial. Clinical Nephrology, 76(4), 273–283.
    Toyohara, T., Akiyama, Y., Suzuki, T., Takeuchi, Y., Mishima, E., Tanemoto, M., et al. (2010). Metabolomic profiling of uremic solutes in CKD patients. Hypertension Research, 33(9), 944–952.
    Vaarhorst, A. A., Verhoeven, A., Weller, C. M., Böhringer, S., Göraler, S., Meissner, A., et al. (2014). A metabolomic profile is associated with the risk of incident coronary heart disease. American Heart Journal, 168(1), 45–52.e7.
    Vaisman, B. L., Andrews, K. L., Khong, S. M., Wood, K. C., Moore, X. L., Fu, Y., et al. (2012). Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice. PLoS ONE, 7(7), e39487.
    Watanabe, M., Kokubo, Y., Higashiyama, A., Ono, Y., Miyamoto, Y., & Okamura, T. (2011). Serum 1,5-anhydro-D-glucitol levels predict first-ever cardiovascular disease: An 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis, 216(2), 477–483.
    Weiss, R. H., & Kim, K. (2011). Metabolomics in the study of kidney diseases. Nature Reviews Nephrology, 8(1), 22–33.
    Yu, B., Zheng, Y., Nettleton, J. A., Alexander, D., Coresh, J., & Boerwinkle, E. (2014). Serum metabolomic profiling and incident CKD among African Americans. Clinical Journal of the American Society of Nephrology, 9(8), 1410–1417.
    Zhao, Y. Y. (2013). Metabolomics in chronic kidney disease. Clinica Chimica Acta, 422, 59–69.
    Zhao, Y. Y., Cheng, X. L., Vaziri, N. D., Liu, S., & Lin, R. C. (2014). UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clinical Biochemistry, 47(15), 16–26.
    Zhao, Y. Y., Miao, H., Cheng, X. L., Wei, F.. Lipidomics (2015). Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chemico-Biological Interactions, 240, 220–238.
    Zhao, Y. Y., Vaziri, N. D., & Lin, R. C. (2015). Lipidomics: New insight into kidney disease. Advances in Clinical Chemistry, 68, 153–175.
    Zhao, Y. Y., Wu, S. P., Liu, S., Zhang, Y., & Lin, R. C. (2014). Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chemico-Biological Interactions, 220, 181–192.