Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs (2018)

  • Authors:
  • USP affiliated authors: BARRERA, JUNIOR - IME
  • USP Schools: IME
  • DOI: 10.1038/s41598-018-33420-z
  • Subjects: BIOINFORMÁTICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-33420-z (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-018-33420-z (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Evidência: oa journal (via doaj)
      • Licença: cc-by
      • Versão: publishedVersion
      • Tipo de hospedagem: publisher


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher



    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BRANCO, Paulo R; ARAÚJO, Gilderlanio S. de; BARRERA, Júnior; SUAREZ-KURTZ, Guilherme; SOUZA, Sandro José de. Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs. Scientific Reports, London, Nature, v. 8, p. 15050-1-15050-10, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-33420-z > DOI: 10.1038/s41598-018-33420-z.
    • APA

      Branco, P. R., Araújo, G. S. de, Barrera, J., Suarez-Kurtz, G., & Souza, S. J. de. (2018). Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs. Scientific Reports, 8, 15050-1-15050-10. doi:10.1038/s41598-018-33420-z
    • NLM

      Branco PR, Araújo GS de, Barrera J, Suarez-Kurtz G, Souza SJ de. Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs [Internet]. Scientific Reports. 2018 ; 8 15050-1-15050-10.Available from: http://dx.doi.org/10.1038/s41598-018-33420-z
    • Vancouver

      Branco PR, Araújo GS de, Barrera J, Suarez-Kurtz G, Souza SJ de. Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs [Internet]. Scientific Reports. 2018 ; 8 15050-1-15050-10.Available from: http://dx.doi.org/10.1038/s41598-018-33420-z

    Referências citadas na obra
    Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).
    Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234 (2009).
    Meng, Y., Quan, L. & Liu, A. Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions. Gene 642, 205–211 (2018).
    Qu, R. et al. MicroRNA-374b reduces the proliferation and invasion of colon cancer cells by regulation of LRH-1/Wnt signaling. Gene 642, 354–361 (2018).
    Hayes, J., Peruzzi, P. P. & Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469 (2014).
    Chen, K. & Rajewsky, N. Natural selection on human microRNA binding sites inferred from SNP data. Nat. Genet. 38, 1452–1456 (2006).
    Peng, Z. et al. Genome-wide analyses of long noncoding RNA expression profiles in lung adenocarcinoma. Sci. Rep. 7, 1–11 (2017).
    Prensner, J. R. & Chinnaiyan, A. M. The emergence of lncRNAs in cancer biology. Cancer Discov. 1, 391–407 (2011).
    Shi, X., Sun, M., Liu, H., Yao, Y. & Song, Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett. 339, 159–166 (2013).
    Bhattacharya, A., Ziebarth, J. D. & Cui, Y. PolymiRTS Database 3.0: Linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res. 42, 86–91 (2014).
    Liu, C. et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13 (2012).
    Deveci, M., Çatalyürek, Ü. V. & Toland, A. E. MrSNP: Software to detect SNP effects on microRNA binding. BMC Bioinformatics 15 (2014).
    Võsa, U., Esko, T., Kasela, S. & Annilo, T. Altered gene expression associated with microRNA binding site polymorphisms. Plos One 10, 1–24 (2015).
    Bruno, A. E. et al. miRdSNP: A database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics 13 (2012).
    Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, 109D–111 (2004).
    Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).
    Griffiths-Jones, S., Saini, H. K., Van Dongen, S. & Enright, A. J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36, 154–158 (2008).
    Kozomara, A. & Griffiths-Jones, S. MiRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, 152–157 (2011).
    Kozomara, A. & Griffiths-Jones, S. MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, 68–73 (2014).
    Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, 1–38 (2015).
    Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).
    Altshuler, D. M. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
    The GTEx Consortium. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science (80-). 348, 648–60 (2015).
    Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, 1001–1006 (2014).
    Whirl-Carrillo, M. et al. Pharmacogenomics Knowledge for Personlized Medicine. Clin. Pharmacol. Therpeutics 92, 414–417 (2012).
    Silveira, V. S. et al. Gene expression pattern contributing to prognostic factors in childhood acute lymphoblastic leukemia. Leuk. Lymphoma 54, 310–314 (2013).
    Wang, N. et al. MiR-141-3p suppresses proliferation and promotes apoptosis by targeting GLI2 in osteosarcoma cells. Oncol. Rep. 39, 747–754 (2018).
    Huang, S. et al. Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J. Exp. Clin. Cancer Res. 36, 173 (2017).
    Zhou, X. et al. MicroRNA-141-3p promotes glioma cell growth and temozolomide resistance by directly targeting p53. Oncotarget 8, 71080–71094 (2017).
    Couch, F. J. et al. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat. Commun. 7 (2016).
    Astle, W. J. et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 167, 1415–1429.e19 (2016).
    Jahanbani, I., Al-Abdallah, A., Ali, R., Al-Brahim, N. & Mojiminiyi, O. Discriminatory miRNAs for the management of papillary thyroid carcinoma and noninvasive follicular thyroid neoplasms with papillary-like nuclear features. Thyroid thy.2017.0127, https://doi.org/10.1089/thy.2017.0127 (2018).
    Comuzzie, A. G. et al. Novel Genetic Loci Identified for the Pathophysiology of Childhood Obesity in the Hispanic Population. Plos One 7 (2012).
    Studies, T. I. C. for B. P. G.-W. A. Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk. Nature 478, 103–109 (2012).
    Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41, 666–676 (2009).
    Wain, L. V. et al. Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets from Blood and the Kidney. Hypertension 70, e4–e19 (2017).
    Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).
    Felix, J. F. et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet. 25, 389–403 (2016).
    Pott, J. et al. Genome-wide meta-analysis identifies novel loci of plaque burden in carotid artery. Atherosclerosis 259, 32–40 (2017).