Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe (2018)

  • Authors:
  • USP affiliated authors: MASSAD, EDUARDO - FM ; AMAKU, MARCOS - FM ; COUTINHO, FRANCISCO ANTONIO BEZERRA - FM ; BURATTINI, MARCELO NASCIMENTO - FM
  • USP Schools: FM; FM; FM; FM
  • DOI: 10.1038/s41598-018-22590-5
  • Subjects: DENGUE; TÉCNICAS MICROBIOLÓGICAS; VIAGENS; VÍRUS DE VERTEBRADOS; EUROPA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-018-22590-5 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-018-22590-5 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository



    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MASSAD, Eduardo; AMAKU, Marcos; COUTINHO, Francisco Antonio Bezerra; BURATTINI, Marcelo Nascimento. Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe. Scientific reports, London, v. 8, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-22590-5 > DOI: 10.1038/s41598-018-22590-5.
    • APA

      Massad, E., Amaku, M., Coutinho, F. A. B., & Burattini, M. N. (2018). Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe. Scientific reports, 8. doi:10.1038/s41598-018-22590-5
    • NLM

      Massad E, Amaku M, Coutinho FAB, Burattini MN. Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe [Internet]. Scientific reports. 2018 ; 8Available from: http://dx.doi.org/10.1038/s41598-018-22590-5
    • Vancouver

      Massad E, Amaku M, Coutinho FAB, Burattini MN. Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe [Internet]. Scientific reports. 2018 ; 8Available from: http://dx.doi.org/10.1038/s41598-018-22590-5

    Referências citadas na obra
    Wilder-Smith, A. et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis 17, e101–e106, https://doi.org/10.1016/S1473-3099(16)30518-7 (2017).
    Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, e08347, https://doi.org/10.7554/eLife.08347 (2015).
    Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: the shape of things to come? J Am Mosq Control Assoc 14, 83–94 (1998).
    Liu-Helmersson, J. et al. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission inEurope. EbioMedicine 7, 267–277, https://doi.org/10.1016/j.ebiom.2016.03.046 (2016).
    Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. & Rocklov, J. Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. PLoS One 9, e89783, https://doi.org/10.1371/journal.pone.0089783 (2014).
    Astrom, C. et al. Potential distribution of dengue fever under scenarios of climate change and economic development. Ecohealth 9, 448–454, https://doi.org/10.1007/s10393-012-0808-0 (2012).
    La Ruche, G. et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill 15, 19676 (2010).
    Wilder-Smith, A. et al. The 2012 dengue outbreak in Madeira: exploring the origins. Euro Surveill 19, 20718 (2014).
    Khan, K. et al. Assessing the origin of and potential for international spread of chikungunya virus from the Caribbean. PLoS currents 6, https://doi.org/10.1371/currents.outbreaks.2134a0a7bf37fd8d388181539fea2da5 (2014).
    Khan, K. et al. Potential for the international spread of middle East respiratory syndrome in association with mass gatherings in saudi arabia. PLoS currents 5, https://doi.org/10.1371/currents.outbreaks.a7b70897ac2fa4f79b59f90d24c860b8 (2013).
    Khan, K. et al. Spread of a novel influenza A (H1N1) virus via global airline transportation. N Engl J Med 361, 212–214, https://doi.org/10.1056/NEJMc0904559 (2009).
    Quam, M. B. & Wilder-Smith, A. Estimated global exportations of Zika virus infections via travellers from Brazil from 2014 to 2015. J Travel Med 23, https://doi.org/10.1093/jtm/taw059 (2016).
    Quam, M. B., Sessions, O., Kamaraj, U. S., Rocklov, J. & Wilder-Smith, A. Dissecting Japan’s Dengue Outbreak in 2014. Am J Trop Med Hyg 94, 409–412, https://doi.org/10.4269/ajtmh.15-0468 (2016).
    Massad, E., Tan, S. H., Khan, K. & Wilder-Smith, A. Estimated Zika virus importations to Europe by travellers from Brazil. Glob Health Action 9, 31669, https://doi.org/10.3402/gha.v9.31669 (2016).
    Hamer, D. H. et al. Travel-Associated Zika Virus Disease Acquired in the Americas Through February 2016: A GeoSentinel Analysis. Ann Intern Med, https://doi.org/10.7326/M16-1842 (2016).
    Burattini, M. N. et al. Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic Games in Rio de Janeiro, Brazil. Epidemiol Infect 144, 1904–1906, https://doi.org/10.1017/S0950268816000649 (2016).
    Wilder-Smith, A. et al. Potential for international spread of wild poliovirus via travelers. BMC Med1 3, 133, https://doi.org/10.1186/s12916-015-0363-y (2015).
    Zhou, Y. P., Wilder-Smith, A. & Hsu, L. Y. The role of international travel in the spread of methicillin-resistant Staphylococcus aureus. J Travel Med 21, 272–281, https://doi.org/10.1111/jtm.12133 (2014).
    Glaesser, D., Kester, J., Paulose, H., Alizadeh, A. & Valentin, B. Global travel patterns: an overview. J Travel Med 24 https://doi.org/10.1093/jtm/tax007 (2017).
    Neumayr, A. et al. Sentinel surveillance of imported dengue via travellers toEurope 2012 to 2014: TropNet data from the DengueTools Research Initiative. Euro Surveill 22 https://doi.org/10.2807/1560-7917.ES.2017.22.1.30433 (2017).
    Lopez, L. F. et al. Modeling Importations and Exportations of Infectious Diseases via Travelers. Bull Math Biol 78, 185–209, https://doi.org/10.1007/s11538-015-0135-z (2016).
    Quam, M. B. & Wilder-Smith, A. Importation index of dengue to determine the most probable origin of importation. J Travel Med 22, 72, https://doi.org/10.1111/jtm.12177 (2015).
    Quam, M. B. et al. Estimating air travel-associated importations of dengue virus into Italy. J Travel Med 22, 186–193, https://doi.org/10.1111/jtm.12192 (2015).
    Ximenes, R. et al. The risk of dengue for non-immune foreign visitors to the 2016 summer olympic games in Rio de Janeiro, Brazil. BMC Infect Dis 16, 186, https://doi.org/10.1186/s12879-016-1517-z (2016).
    Massad, E. et al. Risk of symptomatic dengue for foreign visitors to the 2014 FIFA World Cup in Brazil. Mem Inst Oswaldo Cruz 109, 394–397 (2014).
    Amaku, M. et al. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever. Bull Math Biol 76, 697–717, https://doi.org/10.1007/s11538-014-9939-5 (2014).
    Schaffner, F., Fontenille, D. & Mathis, A. Autochthonous dengue emphasises the threat of arbovirosis in Europe. Lancet Infect Dis 14, 1044, https://doi.org/10.1016/S1473-3099(14)70925-9 (2014).
    Duong, V. et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci USA 112, 14688–14693, https://doi.org/10.1073/pnas.1508114112 (2015).
    Semenza, J. C. et al. International dispersal of dengue through air travel: importation risk forEurope. PLoS Negl Trop Dis 8, e3278, https://doi.org/10.1371/journal.pntd.0003278 (2014).
    Medlock, J. M. et al. Detection of the invasive mosquito species Aedes albopictus in southern England. Lancet Infect Dis 17, 140, https://doi.org/10.1016/S1473-3099(17)30024-5 (2017).
    Kraemer, M. U. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific data 2, 150035, https://doi.org/10.1038/sdata.2015.35 (2015).
    Rezza, G. et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846 (2007).
    Stanaway, J. D. et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis 16, 712–723, https://doi.org/10.1016/S1473-3099(16)00026-8 (2016).
    Carrington, L. B., Seifert, S. N., Willits, N. H., Lambrechts, L. & Scott, T. W. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. Journal of medical entomology 50, 43–51 (2013).
    Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA 108, 7460–7465, https://doi.org/10.1073/pnas.1101377108 (2011).