Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector (2018)

  • Authors:
  • USP affiliated authors: LEITE, MARCO AURELIO LISBOA - IF
  • USP Schools: IF
  • DOI: 10.1007/jhep01(2018)126
  • Subjects: COLISÕES DE ÍONS PESADOS RELATIVÍSTICOS; ESPALHAMENTO; LHC
  • Keywords: HADRON-HADRON SCATTERING (EXPERIMENTS)
  • Agências de fomento:
  • Language: Inglês
  • Abstract: Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 36.1 fb−1 at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons (e or µ). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/jhep01(2018)126 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      AABOUD, M; DONADELLI, Marisílvia; ROSA NAVARRO, José Luis La; LEITE, Marco Aurelio Lisboa. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. Journal of High Energy Physics, Bristol, IOP, v. 2018, n. 126, p. 1-53, 2018. DOI: 10.1007/jhep01(2018)126.
    • APA

      Aaboud, M., Donadelli, M., Rosa Navarro, J. L. L., & Leite, M. A. L. (2018). Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. Journal of High Energy Physics, 2018( 126), 1-53. doi:10.1007/jhep01(2018)126
    • NLM

      Aaboud M, Donadelli M, Rosa Navarro JLL, Leite MAL. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. Journal of High Energy Physics. 2018 ; 2018( 126): 1-53.
    • Vancouver

      Aaboud M, Donadelli M, Rosa Navarro JLL, Leite MAL. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. Journal of High Energy Physics. 2018 ; 2018( 126): 1-53.

    Referências citadas na obra
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s = 13 $$ \sqrt{s}=13 $$ TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [ arXiv:1604.07773 ] [ INSPIRE ].
    CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s = 13 $$ \sqrt{s}=13 $$ TeV, JHEP 07 (2017) 014 [ arXiv:1703.01651 ] [ INSPIRE ].
    ATLAS collaboration, Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at s = 13 $$ \sqrt{\mathbf{s}}=\mathbf{13} $$ TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 765 [ arXiv:1707.03263 ] [ INSPIRE ].
    V. Trimble, Existence and nature of dark matter in the Universe, Ann. Rev. Astron. Astrophys. 25 (1987) 425.
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [ hep-ph/0404175 ] [ INSPIRE ].
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [ arXiv:1003.0904 ] [ INSPIRE ].
    G. Steigman and M.S. Turner, Cosmological constraints on the properties of weakly interacting massive particles, Nucl. Phys. B 253 (1985) 375 [ INSPIRE ].
    E.W. Kolb and M.S. Turner, The early Universe, Front. Phys. 69 (1990) 1 [ INSPIRE ].
    Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys. 594 (2016) A1 [ arXiv:1502.01582 ] [ INSPIRE ].
    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [ arXiv:1212.5226 ] [ INSPIRE ].
    J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [ arXiv:1506.03116 ] [ INSPIRE ].
    D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [ INSPIRE ].
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: Vector mediators, JHEP 01 (2015) 037 [ arXiv:1407.8257 ] [ INSPIRE ].
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [ arXiv:1502.01518 ] [ INSPIRE ].
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [ arXiv:1008.1783 ] [ INSPIRE ].
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [ arXiv:1307.2253 ] [ INSPIRE ].
    N.F. Bell et al., Searching for dark matter at the LHC with a Mono-Z, Phys. Rev. D 86 (2012) 096011 [ arXiv:1209.0231 ] [ INSPIRE ].
    M. Papucci, A. Vichi and K.M. Zurek, Monojet versus the rest of the world I: t-channel models, JHEP 11 (2014) 024 [ arXiv:1402.2285 ] [ INSPIRE ].
    A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using mono-X collider searches, JHEP 05 (2016) 112 [ arXiv:1603.01366 ] [ INSPIRE ].
    H. Miyazawa, Baryon number changing currents, Prog. Theor. Phys. 36 (1966) 1266 [ INSPIRE ].
    P. Ramond, Dual theory for free fermions, Phys. Rev. D 3 (1971) 2415 [ INSPIRE ].
    Yu.A. Golfand and E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [ INSPIRE ].
    A. Neveu and J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [ INSPIRE ].
    A. Neveu and J.H. Schwarz, Quark model of dual pions, Phys. Rev. D 4 (1971) 1109 [ INSPIRE ].
    J.-L. Gervais and B. Sakita, Field theory interpretation of supergauges in dual models, Nucl. Phys. B 34 (1971) 632 [ INSPIRE ].
    D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. 46B (1973) 109 [ INSPIRE ].
    J. Wess and B. Zumino, A lagrangian model invariant under supergauge transformations, Phys. Lett. 49B (1974) 52 [ INSPIRE ].
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [ INSPIRE ].
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [ INSPIRE ].
    P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. 64B (1976) 159 [ INSPIRE ].
    P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. 69B (1977) 489 [ INSPIRE ].
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. 76B (1978) 575 [ INSPIRE ].
    P. Fayet, Relations between the masses of the superpartners of leptons and quarks, the goldstino couplings and the neutral currents, Phys. Lett. 84B (1979) 416 [ INSPIRE ].
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [ INSPIRE ].
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [ hep-ph/9803315 ] [ INSPIRE ].
    ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [ INSPIRE ].
    ATLAS collaboration, ATLAS insertable B-layer technical design report, ATLAS-TDR-19 (2010).
    ATLAS collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317 [ arXiv:1611.09661 ] [ INSPIRE ].
    ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823 [ arXiv:1005.4568 ] [ INSPIRE ].
    GEANT4 collaboration, S. Agostinelli et al., GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [ INSPIRE ].
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [ hep-ph/0603175 ] [ INSPIRE ].
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [ arXiv:1002.2581 ] [ INSPIRE ].
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [ arXiv:0709.2092 ] [ INSPIRE ].
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [ hep-ph/0409146 ] [ INSPIRE ].
    U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [ arXiv:1310.4491 ] [ INSPIRE ].
    U. Haisch and E. Re, Simplified dark matter top-quark interactions at the LHC, JHEP 06 (2015) 078 [ arXiv:1503.00691 ] [ INSPIRE ].
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [ arXiv:1410.8849 ] [ INSPIRE ].
    ATLAS collaboration, ATLAS Run 1 PYTHIA8 tunes, ATL-PHYS-PUB-2014-021 (2014).
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [ arXiv:1405.0301 ] [ INSPIRE ].
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [ arXiv:1207.1303 ] [ INSPIRE ].
    L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, JHEP 03 (2012) 019 [ arXiv:1109.4829 ] [ INSPIRE ].
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [ hep-ph/9710451 ] [ INSPIRE ].
    W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [ arXiv:1006.4771 ] [ INSPIRE ].
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [ arXiv:1105.1110 ] [ INSPIRE ].
    C. Borschensky et al., Squark and gluino production cross sections in pp collisions at s = 13 $$ \sqrt{s}=13 $$ , 14, 33 and 100 TeV, Eur. Phys. J. C 74 (2014) 3174 [ arXiv:1407.5066 ] [ INSPIRE ].
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [ arXiv:0811.4622 ] [ INSPIRE ].
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [ arXiv:1111.5206 ] [ INSPIRE ].
    T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [ arXiv:0808.3674 ] [ INSPIRE ].
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [ arXiv:0709.1027 ] [ INSPIRE ].
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [ arXiv:1207.5030 ] [ INSPIRE ].
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [ arXiv:0903.2120 ] [ INSPIRE ].
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [ hep-ph/0703012 ] [ INSPIRE ].
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [ arXiv:0901.0002 ] [ INSPIRE ].
    J.M. Lindert et al., Precise predictions for V +jets dark matter backgrounds, Eur. Phys. J. C 77 (2017)829 [ arXiv:1705.04664 ] [ INSPIRE ].
    ATLAS collaboration, Measurements of the production cross section of a Z boson in association with jets in pp collisions at s = 13 $$ \sqrt{s}=13 $$ TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 361 [ arXiv:1702.05725 ] [ INSPIRE ].
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [ arXiv:0707.3088 ] [ INSPIRE ].
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [ arXiv:1007.2241 ] [ INSPIRE ].
    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [ INSPIRE ].
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [ arXiv:0803.0883 ] [ INSPIRE ].
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [ arXiv:1105.0020 ] [ INSPIRE ].
    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [ arXiv:0802.1189 ] [ INSPIRE ].
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [ arXiv:1111.6097 ] [ INSPIRE ].
    ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at s = 7 $$ \sqrt{s}=7 $$ TeV, Eur. Phys. J. C 73 (2013) 2304 [ arXiv:1112.6426 ] [ INSPIRE ].
    ATLAS collaboration, Tagging and suppression of pileup jets with the ATLAS detector, ATLAS-CONF-2014-018 (2014).
    ATLAS collaboration, Performance of b-jet identification in the ATLAS experiment, 2016 JINST 11 P04008 [ arXiv:1512.01094 ] [ INSPIRE ].
    ATLAS collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run, ATL-PHYS-PUB-2016-012 (2016).
    ATLAS collaboration, Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton-proton collision data, ATLAS-CONF-2014-032 (2014).
    ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at s = 13 $$ \sqrt{s}=13 $$ TeV, Eur. Phys. J. C 76 (2016) 292 [ arXiv:1603.05598 ] [ INSPIRE ].
    ATLAS collaboration, Expected performance of missing transverse momentum reconstruction for the ATLAS detector at s = 13 $$ \sqrt{s}=13 $$ TeV, ATL-PHYS-PUB-2015-023 (2015).
    ATLAS collaboration, Luminosity determination in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [ arXiv:1608.03953 ] [ INSPIRE ].
    ATLAS collaboration, Selection of jets produced in 13TeV proton-proton collisions with the ATLAS detector, ATLAS-CONF-2015-029 (2015).
    ATLAS collaboration, Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run, 2013 JINST 8 P07004 [ arXiv:1303.0223 ] [ INSPIRE ].
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of s = 7 $$ \sqrt{s}=7 $$ TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [ arXiv:1208.0949 ] [ INSPIRE ].
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [ arXiv:1007.1727 ] [ INSPIRE ].
    ATLAS collaboration, Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, ATLAS-CONF-2016-024 (2016).
    ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071 [ arXiv:1407.5063 ] [ INSPIRE ].
    ATLAS collaboration, ATLAS simulation of boson plus jets processes in Run 2, ATL-PHYS-PUB-2017-006 (2017).
    ATLAS collaboration, Studies on top-quark Monte Carlo modelling with Sherpa and MG5_aMC@NLO, ATL-PHYS-PUB-2017-007 (2017).
    ATLAS collaboration, Multi-boson simulation for 13 TeV ATLAS Analyses, ATL-PHYS-PUB-2017-005 (2017).
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [ arXiv:1412.3989 ] [ INSPIRE ].
    A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [ INSPIRE ].
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [ arXiv:1510.02110 ] [ INSPIRE ].
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [ INSPIRE ].
    M. Backović, A. Martini, O. Mattelaer, K. Kong and G. Mohlabeng, Direct detection of dark matter with MadDM v.2.0, Phys. Dark Univ. 9-10 (2015) 37 [ arXiv:1505.04190 ] [ INSPIRE ].
    PICO collaboration, C. Amole et al., Dark matter search results from the PICO-60 C3F8 bubble chamber, Phys. Rev. Lett. 118 (2017) 251301 [ arXiv:1702.07666 ] [ INSPIRE ].
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at s = 13 $$ \sqrt{s}=13 $$ TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 392 [ arXiv:1605.03814 ] [ INSPIRE ].
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [ arXiv:1210.4491 ] [ INSPIRE ].
    ATLAS collaboration, ATLAS computing acknowledgements 2016-2017, ATL-GEN-PUB-2016-002 (2016).