Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico (2017)

  • Authors:
  • USP affiliated authors: HOJO, ELZA TIEMI SAKAMOTO - FFCLRP ; TAKAHASHI, CATARINA SATIE - FFCLRP ; GIULIATTI, SILVANA - FMRP
  • USP Schools: FFCLRP; FFCLRP; FMRP
  • DOI: 10.1007/s11064-017-2295-8
  • Subjects: DOENÇA DE ALZHEIMER; ALCALOIDES; AMARYLLIDACEAE
  • Keywords: Molecular docking in silico; Alkaloids; Amaryllidaceae; Alzheime's disease
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11064-017-2295-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CASTILLO-ORDÓÑEZ, Willian O.; TAMAROZZI, Elvira R.; SILVA, Gabriel M. da; et al. Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico. Neurochemical Research, New York, v. 42, p. 2826-2830, 2017. Disponível em: < http://dx.doi.org/10.1007/s11064-017-2295-8 > DOI: 10.1007/s11064-017-2295-8.
    • APA

      Castillo-Ordóñez, W. O., Tamarozzi, E. R., Silva, G. M. da, Aristizabal-Pachón, A. F., Sakamoto-Hojo, E. T., Takahashi, C. S., & Giuliatti, S. (2017). Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico. Neurochemical Research, 42, 2826-2830. doi:10.1007/s11064-017-2295-8
    • NLM

      Castillo-Ordóñez WO, Tamarozzi ER, Silva GM da, Aristizabal-Pachón AF, Sakamoto-Hojo ET, Takahashi CS, Giuliatti S. Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico [Internet]. Neurochemical Research. 2017 ; 42 2826-2830.Available from: http://dx.doi.org/10.1007/s11064-017-2295-8
    • Vancouver

      Castillo-Ordóñez WO, Tamarozzi ER, Silva GM da, Aristizabal-Pachón AF, Sakamoto-Hojo ET, Takahashi CS, Giuliatti S. Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico [Internet]. Neurochemical Research. 2017 ; 42 2826-2830.Available from: http://dx.doi.org/10.1007/s11064-017-2295-8

    Referências citadas na obra
    Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y (2006) Global prevalence of dementia: a delphi consensus study. Lancet 366:2112–2117
    Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766
    Bao F, Wicklund L, Lacor PN, Klein WL, Nordberg A, Marutle A (2012) Different beta-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol Aging 33(825):e821–e813
    Rosenblum WI (2014) Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging 35:969–974
    Iqbal K, Alonso AC, Gong CX, Khatoon S, Pei JJ, Wang JZ, Grundke-Iqbal I (1998) Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl 53:169–180
    Arias E, Gallego-Sandín S, Villarroya M, García AG, López MG (2005) Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors. J Pharmacol Exp Ther 315:1346–1353
    Giacobini E, Struble RG, Zilles K, Maelicke A (1991) Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer’s disease. Neurobiol Aging 12:259–262
    Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210
    Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97:1–13
    Wilcock GK, Lilienfeld S, Gaens E (2000) Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: multicentre randomised controlled trial. Bmj 321:1445
    Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomed 14:289–300
    Natarajan S, Shunmugiah KP, Kasi PD (2013) Plants traditionally used in age-related brain disorders (dementia): an ethanopharmacological survey. Pharmaceut Biol 51:492–523
    Sung SH, Kang SY, Lee KY, Park MJ, Kim JH, Park JH, Kim YC, Kim J, Kim YC (2002) (+)-. ALPHA.-viniferin, a stilbene trimer from caragana chamlague, inhibits acetylcholinesterase. Biol Pharm Bull 25:125–127
    Cortes N, Alvarez R, Osorio EH, Alzate F, Berkov S, Osorio E (2015) Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants. J Pharm Biomed Anal 102:222–228
    Gasca CA, Castillo WO, Takahashi CS, Fagg CW, Magalhaes PO, Fonseca-Bazzo YM, Silveira D (2017) Assessment of anti-cholinesterase activity and cytotoxicity of cagaita (Eugenia dysenterica) leaves. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association
    Pinho BR, Ferreres F, Valentao P, Andrade PB (2013) Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer’s disease treatment. J Pharm Pharmacol 65:1681–1700
    Atanasova M, Stavrakov G, Philipova I, Zheleva D, Yordanov N, Doytchinova I (2015) Galantamine derivatives with indole moiety: docking, design, synthesis and acetylcholinesterase inhibitory activity. Bioorg Med Chem 23:5382–5389
    Houghton PJ, Ren Y, Howes M-J (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199
    Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T (2000) Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. J Mol Biol 296:713–735
    Harel M, Kleywegt GJ, Ravelli RB, Silman I, Sussman JL (1995) Crystal structure of an acetylcholinesterase—fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 3:1355–1366
    Castillo WO, Aristizabal-Pachon AF, Takahashi C (2016) Amaryllidaceae perspectives in AlzheimerS disease. IOSR J Pharm 6:27–33
    Heinrich M, Lee Teoh H (2004) Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92:147–162
    Castillo WO, Aristizabal-Pachon AF, de Lima Montaldi AP, Sakamoto-Hojo ET, Takahashi CS (2016) Galanthamine decreases genotoxicity and cell death induced by beta-amyloid peptide in SH-SY5Y cell line. Neurotoxicology 57:291–297
    Codina C, Cabezas F, Viladomat F, Bastida J, Argoti J, Martínez S (2007) Alcaloides y actividad biológica en Eucharis amazonica, E. grandiflora, Caliphruria subedentata y Crinum kunthianum, especies colombianas de amaryllidaceae.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA (2015) PubChem substance and compound databases. Nucleic Acids Res gkv951
    Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612
    Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 36:375–399
    Konrath EL, Passos Cdos S, Klein LC Jr, Henriques AT (2013) Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J Pharm Pharmacol 65:1701–1725
    Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421
    Kalyaanamoorthy S, Chen Y-PP (2011) Structure-based drug design to augment hit discovery. Drug Discov Today 16:831–839