Ver registro no DEDALUS
Exportar registro bibliográfico



Comparisons by microcomputed tomography of the efficiency of different irrigation techniques for removing dentinal debris from artificial grooves (2018)

  • Authors:
  • USP Schools: FOB; FOB; FOB
  • DOI: 10.4103/JCD.JCD_286_16
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.4103/JCD.JCD_286_16 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo NÃO é de acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CESARIO, Francine; DUARTE, Marco Antonio Hungaro; DUQUE, Jussaro Alves; et al. Comparisons by microcomputed tomography of the efficiency of different irrigation techniques for removing dentinal debris from artificial grooves. Journal of Conservative Dentistry, Mumbai, Medknow Publications and Media Pvt., v. 21, n. 4, p. 383-387, 2018. Disponível em: < > DOI: 10.4103/JCD.JCD_286_16.
    • APA

      Cesario, F., Duarte, M. A. H., Duque, J. A., Alcalde, M. P., Andrade, F. B. de, Só, M. V. R., et al. (2018). Comparisons by microcomputed tomography of the efficiency of different irrigation techniques for removing dentinal debris from artificial grooves. Journal of Conservative Dentistry, 21( 4), 383-387. doi:10.4103/JCD.JCD_286_16
    • NLM

      Cesario F, Duarte MAH, Duque JA, Alcalde MP, Andrade FB de, Só MVR, Vasconcelos BC de, Vivan RR. Comparisons by microcomputed tomography of the efficiency of different irrigation techniques for removing dentinal debris from artificial grooves [Internet]. Journal of Conservative Dentistry. 2018 ; 21( 4): 383-387.Available from:
    • Vancouver

      Cesario F, Duarte MAH, Duque JA, Alcalde MP, Andrade FB de, Só MVR, Vasconcelos BC de, Vivan RR. Comparisons by microcomputed tomography of the efficiency of different irrigation techniques for removing dentinal debris from artificial grooves [Internet]. Journal of Conservative Dentistry. 2018 ; 21( 4): 383-387.Available from:

    Referências citadas na obra
    Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).
    Edge, S. B. & Compton, C. C. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 17, 1471–1474 (2010).
    Scully, C. & Bagan, J. Oral squamous cell carcinoma overview. Oral Oncol. 45, 301–308 (2009).
    Almangush, A. et al. A simple novel prognostic model for early stage oral tongue cancer. Int. J. Oral Maxillofac. Surg. 44, 143–150 (2015).
    da Silva, S. D., Hier, M., Mlynarek, A., Kowalski, L. P. & Alaoui-Jamali, M. A. Recurrent oral cancer: current and emerging therapeutic approaches. Front. Pharmacol. 3, 149 (2012).
    van der Waal, I. Are we able to reduce the mortality and morbidity of oral cancer; some considerations. Med. Oral Patol. Oral Cir. Bucal 18, e33–e37 (2013).
    Ganly, I., Patel, S. & Shah, J. Early stage squamous cell cancer of the oral tongue-clinicopathologic features affecting outcome. Cancer 118, 101–111 (2012).
    Mehanna, H. et al. Appendix—PET-CT surveillance versus neck dissection in advanced head and neck cancer. N. Engl. J. Med. 374, 1–11 (2016).
    Brandwein-Gensler, M. et al. Validation of the histologic risk model in a new cohort of patients with head and neck squamous cell carcinoma. Am. J. Surg. Pathol. 34, 1 (2010).
    Sawazaki-Calone, I. et al. The prognostic value of histopathological grading systems in oral squamous cell carcinomas. Oral Dis. 21, 755–761 (2015).
    Brandwein-Gensler, M. et al. Oral squamous cell carcinoma: histologic risk assessment, but not margin status, is strongly predictive of local disease-free and overall survival. Am. J. Surg. Pathol. 29, 167–178 (2005).
    Sharma, M., Sah, P., Sharma, S. & Radhakrishnan, R. Molecular changes in invasive front of oral cancer. J. Oral Maxillofac. Pathol. 17, 240 (2013).
    Tsai, J. H. & Yang, J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27, 2192–2206 (2013).
    Costa, L. C. M. C. et al. Expression of epithelial−mesenchymal transition markers at the invasive front of oral squamous cell carcinoma. J. Appl. Oral Sci. 23, 169–178 (2015).
    Romanska, H. M. et al. Loss of CD151/Tspan24 from the complex with integrin α3β1 in invasive front of the tumour is a negative predictor of disease-free survival in oral squamous cell carcinoma. Oral Oncol. 49, 224–229 (2013).
    Bryne, M. et al. New malignancy grading is a better prognostic indicator than Broders’ grading in oral squamous cell carcinomas. J. Oral Pathol. Med. 18, 432–437 (1989).
    Jensen, D. et al. Molecular profiling of tumour budding implicates TGFβ-mediated epithelial-mesenchymal transition as a therapeutic target in oral squamous cell carcinoma. J. Pathol. 236, 505–516 (2015).
    Curry, J. M. et al. Tumor microenvironment in head and neck squamous cell carcinoma. Semin. Oncol. 41, 217–234 (2014).
    Tlsty, T. D. & Coussens, L. M. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. Mech. Dis. 1, 119–150 (2006).
    Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).
    Meng, W. et al. A systems biology approach identifies effective tumor-stroma common targets for oral squamous cell carcinoma. Cancer Res. 74, 2306–2315 (2014).
    Winck, F. V. et al. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci. Rep. 5, 16305 (2015).
    Kawahara, R. et al. A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics 16, 159–173 (2016).
    Chen, P., Bu, X., Liu, B., Chen, F. & Chen, P. Increased expression of tissue/salivary transgelin mRNA predicts poor prognosis in patients with oral squamous cell carcinoma (OSCC). Med. Sci. Monit. 21, 2275–2281 (2015).
    Wang, Y., Wang, J. & Huang, Y. MicroRNAs as new biomarkers for human papilloma virus related head and neck cancers. Cancer Biomark. 15, 213–218 (2015).
    Noguti, J. et al. Metastasis from oral cancer: an overview. Cancer Genom. Proteom. 9, 329–335 (2012).
    da Silva, S. D. et al. Predominant Rab-GTPase amplicons contributing to oral squamous cell carcinoma progression to metastasis. Oncotarget 6, 21950–21963 (2015).
    Sundquist, E. et al. Tenascin-C and fibronectin expression divide early stage tongue cancer into low- and high-risk groups. Br. J. Cancer 116, 640–648 (2017).
    Alfonso, P., Cañamero, M., Fernández-Carbonié, F., Núñez, A. & Casal, J. I. Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. J. Proteome Res. 7, 4247–4255 (2008).
    Xie, N. et al. Tumor budding correlates with occult cervical lymph node metastasis and poor prognosis in clinical early-stage tongue squamous cell carcinoma. J. Oral Pathol. Med. 44, 266–272 (2015).
    Salo, T. et al. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches. Exp. Cell Res. 325, 58–64 (2014).
    Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).
    Harris, T. M. et al. Proteomic analysis of oral cavity squamous cell carcinoma specimens identifies patient outcome-associated proteins. Arch. Pathol. Lab. Med. 139, 494–507 (2015).
    Schaaij-Visser, T. B. M. et al. Differential proteomics identifies protein biomarkers that predict local relapse of head and neck squamous cell carcinomas. Clin. Cancer Res. 15, 7666–7675 (2009).
    Chi, L.-M. et al. Enhanced interferon signaling pathway in oral cancer revealed by quantitative proteome analysis of microdissected specimens using 16O/18O labeling and integrated two-dimensional LC-ESI-MALDI tandem MS. Mol. Cell. Proteom. 8, 1453–1474 (2009).
    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
    DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).
    Rodrigues, P. C. et al. Stromal myofibroblasts in potentially malignant and malignant lesions of the oral cavity. Oncol. Lett. 9, 667–670 (2015).
    Zhang, J., Shi, Z., Huang, J. & Zou, X. CSTB downregulation promotes cell proliferation and migration and suppresses apoptosis in gastric cancer SGC-7901 cell line. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 24, 487–494 (2016).
    Turk, V., Stoka, V. & Turk, D. Cystatins: biochemical and structural properties, and medical relevance. Bioscience 13, 5406–5420 (2008).
    Chung, L.-C. et al. L-Mimosine blocks cell proliferation via upregulation of B-cell translocation gene 2 and N-myc downstream regulated gene 1 in prostate carcinoma cells. AJP Cell Physiol. 302, C676–C685 (2012).
    Fang, B. A. et al. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim. Et. Biophys. Acta—Rev. Cancer 1845, 1–19 (2014).
    Hwang, T.-L., Liang, Y., Chien, K.-Y. & Yu, J.-S. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics 6, 2259–2272 (2006).
    Chen, X., Wang, S., Wu, N. & Yang, C. Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Curr. Cancer Drug Targets 4, 267–283 (2004).
    Oi, N. et al. LTA4H regulates cell cycle and skin carcinogenesis. Carcinogenesis 38, 728–737 (2017).
    Jin, H. & Varner, J. Integrins: roles in cancer development and as treatment targets. Br. J. Cancer 90, 561–565 (2004).
    Lu, J. G., Li, Y., Li, L. & Kan, X. Overexpression of osteopontin and integrin αv in laryngeal and hypopharyngeal carcinomas associated with differentiation and metastasis. J. Cancer Res. Clin. Oncol. 137, 1613–1618 (2011).
    Waisberg, J. et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 34, 5599–5607 (2014).
    Sabatelli, P. et al. Collagen VI deficiency affects the organization of fibronectin in the extracellular matrix of cultured fibroblasts. Matrix Biol. 20, 475–486 (2001).
    Chen, P., Cescon, M. & Bonaldo, P. Collagen VI in cancer and its biological mechanisms. Trends Mol. Med. 19, 410–417 (2013).
    McShane, L. M. et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res. Treat. 100, 229–235 (2006).
    Carvalho, A. L. et al. Treatment results on advanced neck metastasis (N3) from head and neck squamous carcinoma. Otolaryngol.—Head Neck Surg. 132, 862–868 (2005).
    Levicar, N. et al. Comparison of potential biological markers cathepsin B, cathepsin L, stefin A and stefin B with urokinase and plasminogen activator inhibitor-1 and clinicopathological data of breast carcinoma patients. Cancer Detect. Prev. 26, 42–49 (2002).
    Feldman, A. S., Banyard, J., Wu, C.-L., McDougal, W. S. & Zetter, B. R. Cystatin B As a tissue and urinary biomarker of bladder cancer recurrence and disease progression. Clin. Cancer Res. 15, 1024–1031 (2009).
    Larsen, S. R., Johansen, J., Sørensen, J. A. & Krogdahl, A. The prognostic significance of histological features in oral squamous cell carcinoma. J. Oral Pathol. Med. 38, 657–662 (2009).
    Ho, A. S. et al. Metastatic lymph node burden and survival in oral cavity cancer. J. Clin. Oncol. 35, 3601–3609 (2017).
    Fan, S. et al. A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma. Int. J. Oral Sci. 3, 180–191 (2011).
    Arduino, P. G. et al. Clinical and histopathologic independent prognostic factors in oral squamous cell carcinoma: a retrospective study of 334 cases. J. Oral Maxillofac. Surg. 66, 1570–1579 (2008).
    Greenberg, J. S., El Naggar, A. K., Mo, V., Roberts, D. & Myers, J. N. Disparity in pathologic and clinical lymph node staging in oral tongue carcinoma: implications for therapeutic decision making. Cancer 98, 508–515 (2003).
    Barnes, L., Eveson, J. W., Reichart, P. & Sidransky, D. Pathology and genetics of head and neck tumours. WHO Classif. Tumour 163−175 (2005)
    Bryne, M., Koppang, H. S., Lilleng, R. & Kjærheim, Å. Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. J. Pathol. 166, 375–381 (1992).
    Flores, I. L. et al. EEF1D modulates proliferation and epithelial-to-mesenchymal transition in oral squamous cell carcinoma. Clin. Sci. 130, 785–799 (2016).
    Villén, J. & Gygi, S. P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3, 1630–1638 (2008).
    Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
    Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).
    Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754 (2010).
    Marakalala, M. J. et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22, 531–538 (2016).
    Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinforma. 16, 169 (2015).
    Maere, S., Heymans, K. & Kuiper, M. BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).
    Saito, R. et al. A travel guide to Cytoscape plugins. Nat. Methods 9, 1069–1076 (2012).
    Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).
    Gallien, S., Duriez, E. & Domon, B. Selected reaction monitoring applied to proteomics. J. Mass Spectrom. 46, 298–312 (2011).
    MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Lagani, V., Athineou, G., Farcomeni, A., Tsagris, M. & Tsamardinos, I. Feature selection with the R Package MXM: discovering multiple, statistically equivalent, predictive feature subsets. Accept. Publ. J. Stat. Softw. VV, 25 (2016).
    Kim, Y. et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat. Commun. 7, 11906 (2016).
    Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
    Batista, G. E. A. P. A., Prati, R. C. & Monard, M. C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl.—Spec. Issue Learn. Imbalanced Datasets 6, 20–29 (2004).
    Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).